Files
platform-external-webrtc/webrtc/modules/audio_processing/audio_processing_impl.cc
Bjorn Volcker 4e7aa43ea0 audio_processing: Adds two UMA histograms logging delay jumps in AEC
We have two histograms today that trigger on large jumps in either platform reported stream delays (WebRTC.Audio.PlatformReportedStreamDelayJump) or the system delay in the AEC (WebRTC.Audio.AecSystemDelayJump). The latter is the internal buffer size in the AEC.
The sizes of such jumps are of relevance since it can harm the AEC and even put it in a complete failure state. It is hard, not to say impossible, to tell how frequent it is.
Therefore, two complementary histograms are added; number of jumps in each metric.
This way we get a quick way to determine how often a jump occurs in general and also how frequent it is within a call.

This is solved by adding a counter for each metric.
The counter is activated either upon an event trigger or if we know for sure when the AEC is running.
Unfortunately, we can't rely on the destructor at the end of a call so we add a public API for the user to take on the action of calling it at the end of a call.

Tested locally by building ToT chromium including changes and three triggered jumps (200, 50 and 60 ms).
The stats picked up the 60 and 200 ms jumps as expected.

BUG=488124
R=asapersson@webrtc.org, pbos@webrtc.org

Review URL: https://codereview.webrtc.org/1229443003.

Cr-Commit-Position: refs/heads/master@{#9544}
2015-07-07 09:50:16 +00:00

1116 lines
37 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/audio_processing_impl.h"
#include <assert.h>
#include "webrtc/base/checks.h"
#include "webrtc/base/platform_file.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
extern "C" {
#include "webrtc/modules/audio_processing/aec/aec_core.h"
}
#include "webrtc/modules/audio_processing/agc/agc_manager_direct.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h"
#include "webrtc/modules/audio_processing/common.h"
#include "webrtc/modules/audio_processing/echo_cancellation_impl.h"
#include "webrtc/modules/audio_processing/echo_control_mobile_impl.h"
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include "webrtc/modules/audio_processing/high_pass_filter_impl.h"
#include "webrtc/modules/audio_processing/level_estimator_impl.h"
#include "webrtc/modules/audio_processing/noise_suppression_impl.h"
#include "webrtc/modules/audio_processing/processing_component.h"
#include "webrtc/modules/audio_processing/transient/transient_suppressor.h"
#include "webrtc/modules/audio_processing/voice_detection_impl.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/file_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/metrics.h"
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Files generated at build-time by the protobuf compiler.
#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
#include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h"
#else
#include "webrtc/audio_processing/debug.pb.h"
#endif
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
#define RETURN_ON_ERR(expr) \
do { \
int err = (expr); \
if (err != kNoError) { \
return err; \
} \
} while (0)
namespace webrtc {
// Throughout webrtc, it's assumed that success is represented by zero.
static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
// This class has two main functionalities:
//
// 1) It is returned instead of the real GainControl after the new AGC has been
// enabled in order to prevent an outside user from overriding compression
// settings. It doesn't do anything in its implementation, except for
// delegating the const methods and Enable calls to the real GainControl, so
// AGC can still be disabled.
//
// 2) It is injected into AgcManagerDirect and implements volume callbacks for
// getting and setting the volume level. It just caches this value to be used
// in VoiceEngine later.
class GainControlForNewAgc : public GainControl, public VolumeCallbacks {
public:
explicit GainControlForNewAgc(GainControlImpl* gain_control)
: real_gain_control_(gain_control),
volume_(0) {
}
// GainControl implementation.
int Enable(bool enable) override {
return real_gain_control_->Enable(enable);
}
bool is_enabled() const override { return real_gain_control_->is_enabled(); }
int set_stream_analog_level(int level) override {
volume_ = level;
return AudioProcessing::kNoError;
}
int stream_analog_level() override { return volume_; }
int set_mode(Mode mode) override { return AudioProcessing::kNoError; }
Mode mode() const override { return GainControl::kAdaptiveAnalog; }
int set_target_level_dbfs(int level) override {
return AudioProcessing::kNoError;
}
int target_level_dbfs() const override {
return real_gain_control_->target_level_dbfs();
}
int set_compression_gain_db(int gain) override {
return AudioProcessing::kNoError;
}
int compression_gain_db() const override {
return real_gain_control_->compression_gain_db();
}
int enable_limiter(bool enable) override { return AudioProcessing::kNoError; }
bool is_limiter_enabled() const override {
return real_gain_control_->is_limiter_enabled();
}
int set_analog_level_limits(int minimum, int maximum) override {
return AudioProcessing::kNoError;
}
int analog_level_minimum() const override {
return real_gain_control_->analog_level_minimum();
}
int analog_level_maximum() const override {
return real_gain_control_->analog_level_maximum();
}
bool stream_is_saturated() const override {
return real_gain_control_->stream_is_saturated();
}
// VolumeCallbacks implementation.
void SetMicVolume(int volume) override { volume_ = volume; }
int GetMicVolume() override { return volume_; }
private:
GainControl* real_gain_control_;
int volume_;
};
AudioProcessing* AudioProcessing::Create() {
Config config;
return Create(config, nullptr);
}
AudioProcessing* AudioProcessing::Create(const Config& config) {
return Create(config, nullptr);
}
AudioProcessing* AudioProcessing::Create(const Config& config,
Beamformer<float>* beamformer) {
AudioProcessingImpl* apm = new AudioProcessingImpl(config, beamformer);
if (apm->Initialize() != kNoError) {
delete apm;
apm = NULL;
}
return apm;
}
AudioProcessingImpl::AudioProcessingImpl(const Config& config)
: AudioProcessingImpl(config, nullptr) {}
AudioProcessingImpl::AudioProcessingImpl(const Config& config,
Beamformer<float>* beamformer)
: echo_cancellation_(NULL),
echo_control_mobile_(NULL),
gain_control_(NULL),
high_pass_filter_(NULL),
level_estimator_(NULL),
noise_suppression_(NULL),
voice_detection_(NULL),
crit_(CriticalSectionWrapper::CreateCriticalSection()),
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
debug_file_(FileWrapper::Create()),
event_msg_(new audioproc::Event()),
#endif
fwd_in_format_(kSampleRate16kHz, 1),
fwd_proc_format_(kSampleRate16kHz),
fwd_out_format_(kSampleRate16kHz, 1),
rev_in_format_(kSampleRate16kHz, 1),
rev_proc_format_(kSampleRate16kHz, 1),
split_rate_(kSampleRate16kHz),
stream_delay_ms_(0),
delay_offset_ms_(0),
was_stream_delay_set_(false),
last_stream_delay_ms_(0),
last_aec_system_delay_ms_(0),
stream_delay_jumps_(-1),
aec_system_delay_jumps_(-1),
output_will_be_muted_(false),
key_pressed_(false),
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
use_new_agc_(false),
#else
use_new_agc_(config.Get<ExperimentalAgc>().enabled),
#endif
agc_startup_min_volume_(config.Get<ExperimentalAgc>().startup_min_volume),
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
transient_suppressor_enabled_(false),
#else
transient_suppressor_enabled_(config.Get<ExperimentalNs>().enabled),
#endif
beamformer_enabled_(config.Get<Beamforming>().enabled),
beamformer_(beamformer),
array_geometry_(config.Get<Beamforming>().array_geometry),
supports_48kHz_(config.Get<AudioProcessing48kHzSupport>().enabled) {
echo_cancellation_ = new EchoCancellationImpl(this, crit_);
component_list_.push_back(echo_cancellation_);
echo_control_mobile_ = new EchoControlMobileImpl(this, crit_);
component_list_.push_back(echo_control_mobile_);
gain_control_ = new GainControlImpl(this, crit_);
component_list_.push_back(gain_control_);
high_pass_filter_ = new HighPassFilterImpl(this, crit_);
component_list_.push_back(high_pass_filter_);
level_estimator_ = new LevelEstimatorImpl(this, crit_);
component_list_.push_back(level_estimator_);
noise_suppression_ = new NoiseSuppressionImpl(this, crit_);
component_list_.push_back(noise_suppression_);
voice_detection_ = new VoiceDetectionImpl(this, crit_);
component_list_.push_back(voice_detection_);
gain_control_for_new_agc_.reset(new GainControlForNewAgc(gain_control_));
SetExtraOptions(config);
}
AudioProcessingImpl::~AudioProcessingImpl() {
{
CriticalSectionScoped crit_scoped(crit_);
// Depends on gain_control_ and gain_control_for_new_agc_.
agc_manager_.reset();
// Depends on gain_control_.
gain_control_for_new_agc_.reset();
while (!component_list_.empty()) {
ProcessingComponent* component = component_list_.front();
component->Destroy();
delete component;
component_list_.pop_front();
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
debug_file_->CloseFile();
}
#endif
}
delete crit_;
crit_ = NULL;
}
int AudioProcessingImpl::Initialize() {
CriticalSectionScoped crit_scoped(crit_);
return InitializeLocked();
}
int AudioProcessingImpl::set_sample_rate_hz(int rate) {
CriticalSectionScoped crit_scoped(crit_);
return InitializeLocked(rate,
rate,
rev_in_format_.rate(),
fwd_in_format_.num_channels(),
fwd_out_format_.num_channels(),
rev_in_format_.num_channels());
}
int AudioProcessingImpl::Initialize(int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
ChannelLayout input_layout,
ChannelLayout output_layout,
ChannelLayout reverse_layout) {
CriticalSectionScoped crit_scoped(crit_);
return InitializeLocked(input_sample_rate_hz,
output_sample_rate_hz,
reverse_sample_rate_hz,
ChannelsFromLayout(input_layout),
ChannelsFromLayout(output_layout),
ChannelsFromLayout(reverse_layout));
}
int AudioProcessingImpl::InitializeLocked() {
const int fwd_audio_buffer_channels = beamformer_enabled_ ?
fwd_in_format_.num_channels() :
fwd_out_format_.num_channels();
render_audio_.reset(new AudioBuffer(rev_in_format_.samples_per_channel(),
rev_in_format_.num_channels(),
rev_proc_format_.samples_per_channel(),
rev_proc_format_.num_channels(),
rev_proc_format_.samples_per_channel()));
capture_audio_.reset(new AudioBuffer(fwd_in_format_.samples_per_channel(),
fwd_in_format_.num_channels(),
fwd_proc_format_.samples_per_channel(),
fwd_audio_buffer_channels,
fwd_out_format_.samples_per_channel()));
// Initialize all components.
for (auto item : component_list_) {
int err = item->Initialize();
if (err != kNoError) {
return err;
}
}
InitializeExperimentalAgc();
InitializeTransient();
InitializeBeamformer();
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
}
#endif
return kNoError;
}
int AudioProcessingImpl::InitializeLocked(int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
int num_input_channels,
int num_output_channels,
int num_reverse_channels) {
if (input_sample_rate_hz <= 0 ||
output_sample_rate_hz <= 0 ||
reverse_sample_rate_hz <= 0) {
return kBadSampleRateError;
}
if (num_output_channels > num_input_channels) {
return kBadNumberChannelsError;
}
// Only mono and stereo supported currently.
if (num_input_channels > 2 || num_input_channels < 1 ||
num_output_channels > 2 || num_output_channels < 1 ||
num_reverse_channels > 2 || num_reverse_channels < 1) {
return kBadNumberChannelsError;
}
if (beamformer_enabled_ &&
(static_cast<size_t>(num_input_channels) != array_geometry_.size() ||
num_output_channels > 1)) {
return kBadNumberChannelsError;
}
fwd_in_format_.set(input_sample_rate_hz, num_input_channels);
fwd_out_format_.set(output_sample_rate_hz, num_output_channels);
rev_in_format_.set(reverse_sample_rate_hz, num_reverse_channels);
// We process at the closest native rate >= min(input rate, output rate)...
int min_proc_rate = std::min(fwd_in_format_.rate(), fwd_out_format_.rate());
int fwd_proc_rate;
if (supports_48kHz_ && min_proc_rate > kSampleRate32kHz) {
fwd_proc_rate = kSampleRate48kHz;
} else if (min_proc_rate > kSampleRate16kHz) {
fwd_proc_rate = kSampleRate32kHz;
} else if (min_proc_rate > kSampleRate8kHz) {
fwd_proc_rate = kSampleRate16kHz;
} else {
fwd_proc_rate = kSampleRate8kHz;
}
// ...with one exception.
if (echo_control_mobile_->is_enabled() && min_proc_rate > kSampleRate16kHz) {
fwd_proc_rate = kSampleRate16kHz;
}
fwd_proc_format_.set(fwd_proc_rate);
// We normally process the reverse stream at 16 kHz. Unless...
int rev_proc_rate = kSampleRate16kHz;
if (fwd_proc_format_.rate() == kSampleRate8kHz) {
// ...the forward stream is at 8 kHz.
rev_proc_rate = kSampleRate8kHz;
} else {
if (rev_in_format_.rate() == kSampleRate32kHz) {
// ...or the input is at 32 kHz, in which case we use the splitting
// filter rather than the resampler.
rev_proc_rate = kSampleRate32kHz;
}
}
// Always downmix the reverse stream to mono for analysis. This has been
// demonstrated to work well for AEC in most practical scenarios.
rev_proc_format_.set(rev_proc_rate, 1);
if (fwd_proc_format_.rate() == kSampleRate32kHz ||
fwd_proc_format_.rate() == kSampleRate48kHz) {
split_rate_ = kSampleRate16kHz;
} else {
split_rate_ = fwd_proc_format_.rate();
}
return InitializeLocked();
}
// Calls InitializeLocked() if any of the audio parameters have changed from
// their current values.
int AudioProcessingImpl::MaybeInitializeLocked(int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
int num_input_channels,
int num_output_channels,
int num_reverse_channels) {
if (input_sample_rate_hz == fwd_in_format_.rate() &&
output_sample_rate_hz == fwd_out_format_.rate() &&
reverse_sample_rate_hz == rev_in_format_.rate() &&
num_input_channels == fwd_in_format_.num_channels() &&
num_output_channels == fwd_out_format_.num_channels() &&
num_reverse_channels == rev_in_format_.num_channels()) {
return kNoError;
}
return InitializeLocked(input_sample_rate_hz,
output_sample_rate_hz,
reverse_sample_rate_hz,
num_input_channels,
num_output_channels,
num_reverse_channels);
}
void AudioProcessingImpl::SetExtraOptions(const Config& config) {
CriticalSectionScoped crit_scoped(crit_);
for (auto item : component_list_) {
item->SetExtraOptions(config);
}
if (transient_suppressor_enabled_ != config.Get<ExperimentalNs>().enabled) {
transient_suppressor_enabled_ = config.Get<ExperimentalNs>().enabled;
InitializeTransient();
}
}
int AudioProcessingImpl::input_sample_rate_hz() const {
CriticalSectionScoped crit_scoped(crit_);
return fwd_in_format_.rate();
}
int AudioProcessingImpl::sample_rate_hz() const {
CriticalSectionScoped crit_scoped(crit_);
return fwd_in_format_.rate();
}
int AudioProcessingImpl::proc_sample_rate_hz() const {
return fwd_proc_format_.rate();
}
int AudioProcessingImpl::proc_split_sample_rate_hz() const {
return split_rate_;
}
int AudioProcessingImpl::num_reverse_channels() const {
return rev_proc_format_.num_channels();
}
int AudioProcessingImpl::num_input_channels() const {
return fwd_in_format_.num_channels();
}
int AudioProcessingImpl::num_output_channels() const {
return fwd_out_format_.num_channels();
}
void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
CriticalSectionScoped lock(crit_);
output_will_be_muted_ = muted;
if (agc_manager_.get()) {
agc_manager_->SetCaptureMuted(output_will_be_muted_);
}
}
bool AudioProcessingImpl::output_will_be_muted() const {
CriticalSectionScoped lock(crit_);
return output_will_be_muted_;
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
int samples_per_channel,
int input_sample_rate_hz,
ChannelLayout input_layout,
int output_sample_rate_hz,
ChannelLayout output_layout,
float* const* dest) {
CriticalSectionScoped crit_scoped(crit_);
if (!src || !dest) {
return kNullPointerError;
}
RETURN_ON_ERR(MaybeInitializeLocked(input_sample_rate_hz,
output_sample_rate_hz,
rev_in_format_.rate(),
ChannelsFromLayout(input_layout),
ChannelsFromLayout(output_layout),
rev_in_format_.num_channels()));
if (samples_per_channel != fwd_in_format_.samples_per_channel()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::STREAM);
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t channel_size =
sizeof(float) * fwd_in_format_.samples_per_channel();
for (int i = 0; i < fwd_in_format_.num_channels(); ++i)
msg->add_input_channel(src[i], channel_size);
}
#endif
capture_audio_->CopyFrom(src, samples_per_channel, input_layout);
RETURN_ON_ERR(ProcessStreamLocked());
capture_audio_->CopyTo(fwd_out_format_.samples_per_channel(),
output_layout,
dest);
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t channel_size =
sizeof(float) * fwd_out_format_.samples_per_channel();
for (int i = 0; i < fwd_out_format_.num_channels(); ++i)
msg->add_output_channel(dest[i], channel_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
return kNoError;
}
int AudioProcessingImpl::ProcessStream(AudioFrame* frame) {
CriticalSectionScoped crit_scoped(crit_);
if (!frame) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
if (echo_control_mobile_->is_enabled() &&
frame->sample_rate_hz_ > kSampleRate16kHz) {
LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates";
return kUnsupportedComponentError;
}
// TODO(ajm): The input and output rates and channels are currently
// constrained to be identical in the int16 interface.
RETURN_ON_ERR(MaybeInitializeLocked(frame->sample_rate_hz_,
frame->sample_rate_hz_,
rev_in_format_.rate(),
frame->num_channels_,
frame->num_channels_,
rev_in_format_.num_channels()));
if (frame->samples_per_channel_ != fwd_in_format_.samples_per_channel()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::STREAM);
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t data_size = sizeof(int16_t) *
frame->samples_per_channel_ *
frame->num_channels_;
msg->set_input_data(frame->data_, data_size);
}
#endif
capture_audio_->DeinterleaveFrom(frame);
RETURN_ON_ERR(ProcessStreamLocked());
capture_audio_->InterleaveTo(frame, output_copy_needed(is_data_processed()));
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t data_size = sizeof(int16_t) *
frame->samples_per_channel_ *
frame->num_channels_;
msg->set_output_data(frame->data_, data_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
return kNoError;
}
int AudioProcessingImpl::ProcessStreamLocked() {
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
audioproc::Stream* msg = event_msg_->mutable_stream();
msg->set_delay(stream_delay_ms_);
msg->set_drift(echo_cancellation_->stream_drift_samples());
msg->set_level(gain_control()->stream_analog_level());
msg->set_keypress(key_pressed_);
}
#endif
MaybeUpdateHistograms();
AudioBuffer* ca = capture_audio_.get(); // For brevity.
if (use_new_agc_ && gain_control_->is_enabled()) {
agc_manager_->AnalyzePreProcess(ca->channels()[0],
ca->num_channels(),
fwd_proc_format_.samples_per_channel());
}
bool data_processed = is_data_processed();
if (analysis_needed(data_processed)) {
ca->SplitIntoFrequencyBands();
}
if (beamformer_enabled_) {
beamformer_->ProcessChunk(*ca->split_data_f(), ca->split_data_f());
ca->set_num_channels(1);
}
RETURN_ON_ERR(high_pass_filter_->ProcessCaptureAudio(ca));
RETURN_ON_ERR(gain_control_->AnalyzeCaptureAudio(ca));
RETURN_ON_ERR(noise_suppression_->AnalyzeCaptureAudio(ca));
RETURN_ON_ERR(echo_cancellation_->ProcessCaptureAudio(ca));
if (echo_control_mobile_->is_enabled() && noise_suppression_->is_enabled()) {
ca->CopyLowPassToReference();
}
RETURN_ON_ERR(noise_suppression_->ProcessCaptureAudio(ca));
RETURN_ON_ERR(echo_control_mobile_->ProcessCaptureAudio(ca));
RETURN_ON_ERR(voice_detection_->ProcessCaptureAudio(ca));
if (use_new_agc_ &&
gain_control_->is_enabled() &&
(!beamformer_enabled_ || beamformer_->is_target_present())) {
agc_manager_->Process(ca->split_bands_const(0)[kBand0To8kHz],
ca->num_frames_per_band(),
split_rate_);
}
RETURN_ON_ERR(gain_control_->ProcessCaptureAudio(ca));
if (synthesis_needed(data_processed)) {
ca->MergeFrequencyBands();
}
// TODO(aluebs): Investigate if the transient suppression placement should be
// before or after the AGC.
if (transient_suppressor_enabled_) {
float voice_probability =
agc_manager_.get() ? agc_manager_->voice_probability() : 1.f;
transient_suppressor_->Suppress(ca->channels_f()[0],
ca->num_frames(),
ca->num_channels(),
ca->split_bands_const_f(0)[kBand0To8kHz],
ca->num_frames_per_band(),
ca->keyboard_data(),
ca->num_keyboard_frames(),
voice_probability,
key_pressed_);
}
// The level estimator operates on the recombined data.
RETURN_ON_ERR(level_estimator_->ProcessStream(ca));
was_stream_delay_set_ = false;
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data,
int samples_per_channel,
int sample_rate_hz,
ChannelLayout layout) {
CriticalSectionScoped crit_scoped(crit_);
if (data == NULL) {
return kNullPointerError;
}
const int num_channels = ChannelsFromLayout(layout);
RETURN_ON_ERR(MaybeInitializeLocked(fwd_in_format_.rate(),
fwd_out_format_.rate(),
sample_rate_hz,
fwd_in_format_.num_channels(),
fwd_out_format_.num_channels(),
num_channels));
if (samples_per_channel != rev_in_format_.samples_per_channel()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::REVERSE_STREAM);
audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream();
const size_t channel_size =
sizeof(float) * rev_in_format_.samples_per_channel();
for (int i = 0; i < num_channels; ++i)
msg->add_channel(data[i], channel_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
render_audio_->CopyFrom(data, samples_per_channel, layout);
return AnalyzeReverseStreamLocked();
}
int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) {
CriticalSectionScoped crit_scoped(crit_);
if (frame == NULL) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
// This interface does not tolerate different forward and reverse rates.
if (frame->sample_rate_hz_ != fwd_in_format_.rate()) {
return kBadSampleRateError;
}
RETURN_ON_ERR(MaybeInitializeLocked(fwd_in_format_.rate(),
fwd_out_format_.rate(),
frame->sample_rate_hz_,
fwd_in_format_.num_channels(),
fwd_in_format_.num_channels(),
frame->num_channels_));
if (frame->samples_per_channel_ != rev_in_format_.samples_per_channel()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::REVERSE_STREAM);
audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream();
const size_t data_size = sizeof(int16_t) *
frame->samples_per_channel_ *
frame->num_channels_;
msg->set_data(frame->data_, data_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
render_audio_->DeinterleaveFrom(frame);
return AnalyzeReverseStreamLocked();
}
int AudioProcessingImpl::AnalyzeReverseStreamLocked() {
AudioBuffer* ra = render_audio_.get(); // For brevity.
if (rev_proc_format_.rate() == kSampleRate32kHz) {
ra->SplitIntoFrequencyBands();
}
RETURN_ON_ERR(echo_cancellation_->ProcessRenderAudio(ra));
RETURN_ON_ERR(echo_control_mobile_->ProcessRenderAudio(ra));
if (!use_new_agc_) {
RETURN_ON_ERR(gain_control_->ProcessRenderAudio(ra));
}
return kNoError;
}
int AudioProcessingImpl::set_stream_delay_ms(int delay) {
Error retval = kNoError;
was_stream_delay_set_ = true;
delay += delay_offset_ms_;
if (delay < 0) {
delay = 0;
retval = kBadStreamParameterWarning;
}
// TODO(ajm): the max is rather arbitrarily chosen; investigate.
if (delay > 500) {
delay = 500;
retval = kBadStreamParameterWarning;
}
stream_delay_ms_ = delay;
return retval;
}
int AudioProcessingImpl::stream_delay_ms() const {
return stream_delay_ms_;
}
bool AudioProcessingImpl::was_stream_delay_set() const {
return was_stream_delay_set_;
}
void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
key_pressed_ = key_pressed;
}
bool AudioProcessingImpl::stream_key_pressed() const {
return key_pressed_;
}
void AudioProcessingImpl::set_delay_offset_ms(int offset) {
CriticalSectionScoped crit_scoped(crit_);
delay_offset_ms_ = offset;
}
int AudioProcessingImpl::delay_offset_ms() const {
return delay_offset_ms_;
}
int AudioProcessingImpl::StartDebugRecording(
const char filename[AudioProcessing::kMaxFilenameSize]) {
CriticalSectionScoped crit_scoped(crit_);
static_assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize, "");
if (filename == NULL) {
return kNullPointerError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stop any ongoing recording.
if (debug_file_->Open()) {
if (debug_file_->CloseFile() == -1) {
return kFileError;
}
}
if (debug_file_->OpenFile(filename, false) == -1) {
debug_file_->CloseFile();
return kFileError;
}
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
int AudioProcessingImpl::StartDebugRecording(FILE* handle) {
CriticalSectionScoped crit_scoped(crit_);
if (handle == NULL) {
return kNullPointerError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stop any ongoing recording.
if (debug_file_->Open()) {
if (debug_file_->CloseFile() == -1) {
return kFileError;
}
}
if (debug_file_->OpenFromFileHandle(handle, true, false) == -1) {
return kFileError;
}
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
int AudioProcessingImpl::StartDebugRecordingForPlatformFile(
rtc::PlatformFile handle) {
FILE* stream = rtc::FdopenPlatformFileForWriting(handle);
return StartDebugRecording(stream);
}
int AudioProcessingImpl::StopDebugRecording() {
CriticalSectionScoped crit_scoped(crit_);
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// We just return if recording hasn't started.
if (debug_file_->Open()) {
if (debug_file_->CloseFile() == -1) {
return kFileError;
}
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
EchoCancellation* AudioProcessingImpl::echo_cancellation() const {
return echo_cancellation_;
}
EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const {
return echo_control_mobile_;
}
GainControl* AudioProcessingImpl::gain_control() const {
if (use_new_agc_) {
return gain_control_for_new_agc_.get();
}
return gain_control_;
}
HighPassFilter* AudioProcessingImpl::high_pass_filter() const {
return high_pass_filter_;
}
LevelEstimator* AudioProcessingImpl::level_estimator() const {
return level_estimator_;
}
NoiseSuppression* AudioProcessingImpl::noise_suppression() const {
return noise_suppression_;
}
VoiceDetection* AudioProcessingImpl::voice_detection() const {
return voice_detection_;
}
bool AudioProcessingImpl::is_data_processed() const {
if (beamformer_enabled_) {
return true;
}
int enabled_count = 0;
for (auto item : component_list_) {
if (item->is_component_enabled()) {
enabled_count++;
}
}
// Data is unchanged if no components are enabled, or if only level_estimator_
// or voice_detection_ is enabled.
if (enabled_count == 0) {
return false;
} else if (enabled_count == 1) {
if (level_estimator_->is_enabled() || voice_detection_->is_enabled()) {
return false;
}
} else if (enabled_count == 2) {
if (level_estimator_->is_enabled() && voice_detection_->is_enabled()) {
return false;
}
}
return true;
}
bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const {
// Check if we've upmixed or downmixed the audio.
return ((fwd_out_format_.num_channels() != fwd_in_format_.num_channels()) ||
is_data_processed || transient_suppressor_enabled_);
}
bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const {
return (is_data_processed && (fwd_proc_format_.rate() == kSampleRate32kHz ||
fwd_proc_format_.rate() == kSampleRate48kHz));
}
bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const {
if (!is_data_processed && !voice_detection_->is_enabled() &&
!transient_suppressor_enabled_) {
// Only level_estimator_ is enabled.
return false;
} else if (fwd_proc_format_.rate() == kSampleRate32kHz ||
fwd_proc_format_.rate() == kSampleRate48kHz) {
// Something besides level_estimator_ is enabled, and we have super-wb.
return true;
}
return false;
}
void AudioProcessingImpl::InitializeExperimentalAgc() {
if (use_new_agc_) {
if (!agc_manager_.get()) {
agc_manager_.reset(new AgcManagerDirect(gain_control_,
gain_control_for_new_agc_.get(),
agc_startup_min_volume_));
}
agc_manager_->Initialize();
agc_manager_->SetCaptureMuted(output_will_be_muted_);
}
}
void AudioProcessingImpl::InitializeTransient() {
if (transient_suppressor_enabled_) {
if (!transient_suppressor_.get()) {
transient_suppressor_.reset(new TransientSuppressor());
}
transient_suppressor_->Initialize(fwd_proc_format_.rate(),
split_rate_,
fwd_out_format_.num_channels());
}
}
void AudioProcessingImpl::InitializeBeamformer() {
if (beamformer_enabled_) {
if (!beamformer_) {
beamformer_.reset(new NonlinearBeamformer(array_geometry_));
}
beamformer_->Initialize(kChunkSizeMs, split_rate_);
}
}
void AudioProcessingImpl::MaybeUpdateHistograms() {
static const int kMinDiffDelayMs = 60;
if (echo_cancellation()->is_enabled()) {
// Activate delay_jumps_ counters if we know echo_cancellation is runnning.
// If a stream has echo we know that the echo_cancellation is in process.
if (stream_delay_jumps_ == -1 && echo_cancellation()->stream_has_echo()) {
stream_delay_jumps_ = 0;
}
if (aec_system_delay_jumps_ == -1 &&
echo_cancellation()->stream_has_echo()) {
aec_system_delay_jumps_ = 0;
}
// Detect a jump in platform reported system delay and log the difference.
const int diff_stream_delay_ms = stream_delay_ms_ - last_stream_delay_ms_;
if (diff_stream_delay_ms > kMinDiffDelayMs && last_stream_delay_ms_ != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.PlatformReportedStreamDelayJump",
diff_stream_delay_ms, kMinDiffDelayMs, 1000, 100);
if (stream_delay_jumps_ == -1) {
stream_delay_jumps_ = 0; // Activate counter if needed.
}
stream_delay_jumps_++;
}
last_stream_delay_ms_ = stream_delay_ms_;
// Detect a jump in AEC system delay and log the difference.
const int frames_per_ms = rtc::CheckedDivExact(split_rate_, 1000);
const int aec_system_delay_ms =
WebRtcAec_system_delay(echo_cancellation()->aec_core()) / frames_per_ms;
const int diff_aec_system_delay_ms = aec_system_delay_ms -
last_aec_system_delay_ms_;
if (diff_aec_system_delay_ms > kMinDiffDelayMs &&
last_aec_system_delay_ms_ != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecSystemDelayJump",
diff_aec_system_delay_ms, kMinDiffDelayMs, 1000,
100);
if (aec_system_delay_jumps_ == -1) {
aec_system_delay_jumps_ = 0; // Activate counter if needed.
}
aec_system_delay_jumps_++;
}
last_aec_system_delay_ms_ = aec_system_delay_ms;
}
}
void AudioProcessingImpl::UpdateHistogramsOnCallEnd() {
CriticalSectionScoped crit_scoped(crit_);
if (stream_delay_jumps_ > -1) {
RTC_HISTOGRAM_ENUMERATION(
"WebRTC.Audio.NumOfPlatformReportedStreamDelayJumps",
stream_delay_jumps_, 51);
}
stream_delay_jumps_ = -1;
last_stream_delay_ms_ = 0;
if (aec_system_delay_jumps_ > -1) {
RTC_HISTOGRAM_ENUMERATION("WebRTC.Audio.NumOfAecSystemDelayJumps",
aec_system_delay_jumps_, 51);
}
aec_system_delay_jumps_ = -1;
last_aec_system_delay_ms_ = 0;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
int AudioProcessingImpl::WriteMessageToDebugFile() {
int32_t size = event_msg_->ByteSize();
if (size <= 0) {
return kUnspecifiedError;
}
#if defined(WEBRTC_ARCH_BIG_ENDIAN)
// TODO(ajm): Use little-endian "on the wire". For the moment, we can be
// pretty safe in assuming little-endian.
#endif
if (!event_msg_->SerializeToString(&event_str_)) {
return kUnspecifiedError;
}
// Write message preceded by its size.
if (!debug_file_->Write(&size, sizeof(int32_t))) {
return kFileError;
}
if (!debug_file_->Write(event_str_.data(), event_str_.length())) {
return kFileError;
}
event_msg_->Clear();
return kNoError;
}
int AudioProcessingImpl::WriteInitMessage() {
event_msg_->set_type(audioproc::Event::INIT);
audioproc::Init* msg = event_msg_->mutable_init();
msg->set_sample_rate(fwd_in_format_.rate());
msg->set_num_input_channels(fwd_in_format_.num_channels());
msg->set_num_output_channels(fwd_out_format_.num_channels());
msg->set_num_reverse_channels(rev_in_format_.num_channels());
msg->set_reverse_sample_rate(rev_in_format_.rate());
msg->set_output_sample_rate(fwd_out_format_.rate());
int err = WriteMessageToDebugFile();
if (err != kNoError) {
return err;
}
return kNoError;
}
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
} // namespace webrtc