
This CL adds support for an extension on RTP frames to allow the sender to specify the minimum and maximum playout delay limits. The receiver makes a best-effort attempt to keep the capture-to-render delay within this range. This allows different types of application to specify different end-to-end delay goals. For example gaming can support rendering of frames as soon as received on receiver to minimize delay. A movie playback application can specify a minimum playout delay to allow fixed buffering in presence of network jitter. There are no tests at this time and most of testing is done with chromium webrtc prototype. On chromoting performance tests, this extension helps bring down end-to-end delay by about 150 ms on small frames. BUG=webrtc:5895 Review-Url: https://codereview.webrtc.org/2007743003 Cr-Commit-Position: refs/heads/master@{#13059}
308 lines
10 KiB
C++
308 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/video_coding/timing.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "webrtc/modules/video_coding/internal_defines.h"
|
|
#include "webrtc/modules/video_coding/jitter_buffer_common.h"
|
|
#include "webrtc/system_wrappers/include/clock.h"
|
|
#include "webrtc/system_wrappers/include/metrics.h"
|
|
#include "webrtc/system_wrappers/include/timestamp_extrapolator.h"
|
|
|
|
namespace webrtc {
|
|
|
|
VCMTiming::VCMTiming(Clock* clock, VCMTiming* master_timing)
|
|
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
clock_(clock),
|
|
master_(false),
|
|
ts_extrapolator_(),
|
|
codec_timer_(new VCMCodecTimer()),
|
|
render_delay_ms_(kDefaultRenderDelayMs),
|
|
min_playout_delay_ms_(0),
|
|
max_playout_delay_ms_(10000),
|
|
jitter_delay_ms_(0),
|
|
current_delay_ms_(0),
|
|
last_decode_ms_(0),
|
|
prev_frame_timestamp_(0),
|
|
num_decoded_frames_(0),
|
|
num_delayed_decoded_frames_(0),
|
|
first_decoded_frame_ms_(-1),
|
|
sum_missed_render_deadline_ms_(0) {
|
|
if (master_timing == NULL) {
|
|
master_ = true;
|
|
ts_extrapolator_ = new TimestampExtrapolator(clock_->TimeInMilliseconds());
|
|
} else {
|
|
ts_extrapolator_ = master_timing->ts_extrapolator_;
|
|
}
|
|
}
|
|
|
|
VCMTiming::~VCMTiming() {
|
|
UpdateHistograms();
|
|
if (master_) {
|
|
delete ts_extrapolator_;
|
|
}
|
|
delete crit_sect_;
|
|
}
|
|
|
|
void VCMTiming::UpdateHistograms() const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
if (num_decoded_frames_ == 0) {
|
|
return;
|
|
}
|
|
int64_t elapsed_sec =
|
|
(clock_->TimeInMilliseconds() - first_decoded_frame_ms_) / 1000;
|
|
if (elapsed_sec < metrics::kMinRunTimeInSeconds) {
|
|
return;
|
|
}
|
|
RTC_LOGGED_HISTOGRAM_COUNTS_100(
|
|
"WebRTC.Video.DecodedFramesPerSecond",
|
|
static_cast<int>((num_decoded_frames_ / elapsed_sec) + 0.5f));
|
|
RTC_LOGGED_HISTOGRAM_PERCENTAGE(
|
|
"WebRTC.Video.DelayedFramesToRenderer",
|
|
num_delayed_decoded_frames_ * 100 / num_decoded_frames_);
|
|
if (num_delayed_decoded_frames_ > 0) {
|
|
RTC_LOGGED_HISTOGRAM_COUNTS_1000(
|
|
"WebRTC.Video.DelayedFramesToRenderer_AvgDelayInMs",
|
|
sum_missed_render_deadline_ms_ / num_delayed_decoded_frames_);
|
|
}
|
|
}
|
|
|
|
void VCMTiming::Reset() {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
|
|
codec_timer_.reset(new VCMCodecTimer());
|
|
render_delay_ms_ = kDefaultRenderDelayMs;
|
|
min_playout_delay_ms_ = 0;
|
|
jitter_delay_ms_ = 0;
|
|
current_delay_ms_ = 0;
|
|
prev_frame_timestamp_ = 0;
|
|
}
|
|
|
|
void VCMTiming::ResetDecodeTime() {
|
|
CriticalSectionScoped lock(crit_sect_);
|
|
codec_timer_.reset(new VCMCodecTimer());
|
|
}
|
|
|
|
void VCMTiming::set_render_delay(int render_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
render_delay_ms_ = render_delay_ms;
|
|
}
|
|
|
|
void VCMTiming::set_min_playout_delay(int min_playout_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
min_playout_delay_ms_ = min_playout_delay_ms;
|
|
}
|
|
|
|
int VCMTiming::min_playout_delay() {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
return min_playout_delay_ms_;
|
|
}
|
|
|
|
void VCMTiming::set_max_playout_delay(int max_playout_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
max_playout_delay_ms_ = max_playout_delay_ms;
|
|
}
|
|
|
|
int VCMTiming::max_playout_delay() {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
return max_playout_delay_ms_;
|
|
}
|
|
|
|
void VCMTiming::SetJitterDelay(int jitter_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
if (jitter_delay_ms != jitter_delay_ms_) {
|
|
jitter_delay_ms_ = jitter_delay_ms;
|
|
// When in initial state, set current delay to minimum delay.
|
|
if (current_delay_ms_ == 0) {
|
|
current_delay_ms_ = jitter_delay_ms_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
int target_delay_ms = TargetDelayInternal();
|
|
|
|
if (current_delay_ms_ == 0) {
|
|
// Not initialized, set current delay to target.
|
|
current_delay_ms_ = target_delay_ms;
|
|
} else if (target_delay_ms != current_delay_ms_) {
|
|
int64_t delay_diff_ms =
|
|
static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
|
|
// Never change the delay with more than 100 ms every second. If we're
|
|
// changing the delay in too large steps we will get noticeable freezes. By
|
|
// limiting the change we can increase the delay in smaller steps, which
|
|
// will be experienced as the video is played in slow motion. When lowering
|
|
// the delay the video will be played at a faster pace.
|
|
int64_t max_change_ms = 0;
|
|
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
|
|
// wrap
|
|
max_change_ms = kDelayMaxChangeMsPerS *
|
|
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
|
|
prev_frame_timestamp_) /
|
|
90000;
|
|
} else {
|
|
max_change_ms = kDelayMaxChangeMsPerS *
|
|
(frame_timestamp - prev_frame_timestamp_) / 90000;
|
|
}
|
|
if (max_change_ms <= 0) {
|
|
// Any changes less than 1 ms are truncated and
|
|
// will be postponed. Negative change will be due
|
|
// to reordering and should be ignored.
|
|
return;
|
|
}
|
|
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
|
|
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
|
|
|
|
current_delay_ms_ = current_delay_ms_ + delay_diff_ms;
|
|
}
|
|
prev_frame_timestamp_ = frame_timestamp;
|
|
}
|
|
|
|
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
|
|
int64_t actual_decode_time_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
uint32_t target_delay_ms = TargetDelayInternal();
|
|
int64_t delayed_ms =
|
|
actual_decode_time_ms -
|
|
(render_time_ms - RequiredDecodeTimeMs() - render_delay_ms_);
|
|
if (delayed_ms < 0) {
|
|
return;
|
|
}
|
|
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
|
|
current_delay_ms_ += delayed_ms;
|
|
} else {
|
|
current_delay_ms_ = target_delay_ms;
|
|
}
|
|
}
|
|
|
|
int32_t VCMTiming::StopDecodeTimer(uint32_t time_stamp,
|
|
int32_t decode_time_ms,
|
|
int64_t now_ms,
|
|
int64_t render_time_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
codec_timer_->AddTiming(decode_time_ms, now_ms);
|
|
assert(decode_time_ms >= 0);
|
|
last_decode_ms_ = decode_time_ms;
|
|
|
|
// Update stats.
|
|
++num_decoded_frames_;
|
|
if (num_decoded_frames_ == 1) {
|
|
first_decoded_frame_ms_ = now_ms;
|
|
}
|
|
int time_until_rendering_ms = render_time_ms - render_delay_ms_ - now_ms;
|
|
if (time_until_rendering_ms < 0) {
|
|
sum_missed_render_deadline_ms_ += -time_until_rendering_ms;
|
|
++num_delayed_decoded_frames_;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
ts_extrapolator_->Update(now_ms, time_stamp);
|
|
}
|
|
|
|
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
|
|
int64_t now_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
const int64_t render_time_ms = RenderTimeMsInternal(frame_timestamp, now_ms);
|
|
return render_time_ms;
|
|
}
|
|
|
|
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
|
|
int64_t now_ms) const {
|
|
int64_t estimated_complete_time_ms =
|
|
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
|
|
if (estimated_complete_time_ms == -1) {
|
|
estimated_complete_time_ms = now_ms;
|
|
}
|
|
|
|
if (min_playout_delay_ms_ == 0 && max_playout_delay_ms_ == 0) {
|
|
// Render as soon as possible
|
|
return now_ms;
|
|
}
|
|
|
|
// Make sure the actual delay stays in the range of |min_playout_delay_ms_|
|
|
// and |max_playout_delay_ms_|.
|
|
int actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
|
|
actual_delay = std::min(actual_delay, max_playout_delay_ms_);
|
|
return estimated_complete_time_ms + actual_delay;
|
|
}
|
|
|
|
// Must be called from inside a critical section.
|
|
int VCMTiming::RequiredDecodeTimeMs() const {
|
|
const int decode_time_ms = codec_timer_->RequiredDecodeTimeMs();
|
|
assert(decode_time_ms >= 0);
|
|
return decode_time_ms;
|
|
}
|
|
|
|
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
|
|
int64_t now_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
|
|
const int64_t max_wait_time_ms =
|
|
render_time_ms - now_ms - RequiredDecodeTimeMs() - render_delay_ms_;
|
|
|
|
if (max_wait_time_ms < 0) {
|
|
return 0;
|
|
}
|
|
return static_cast<uint32_t>(max_wait_time_ms);
|
|
}
|
|
|
|
bool VCMTiming::EnoughTimeToDecode(
|
|
uint32_t available_processing_time_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
int64_t required_decode_time_ms = RequiredDecodeTimeMs();
|
|
if (required_decode_time_ms < 0) {
|
|
// Haven't decoded any frames yet, try decoding one to get an estimate
|
|
// of the decode time.
|
|
return true;
|
|
} else if (required_decode_time_ms == 0) {
|
|
// Decode time is less than 1, set to 1 for now since
|
|
// we don't have any better precision. Count ticks later?
|
|
required_decode_time_ms = 1;
|
|
}
|
|
return static_cast<int64_t>(available_processing_time_ms) -
|
|
required_decode_time_ms >
|
|
0;
|
|
}
|
|
|
|
int VCMTiming::TargetVideoDelay() const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
return TargetDelayInternal();
|
|
}
|
|
|
|
int VCMTiming::TargetDelayInternal() const {
|
|
return std::max(min_playout_delay_ms_,
|
|
jitter_delay_ms_ + RequiredDecodeTimeMs() + render_delay_ms_);
|
|
}
|
|
|
|
void VCMTiming::GetTimings(int* decode_ms,
|
|
int* max_decode_ms,
|
|
int* current_delay_ms,
|
|
int* target_delay_ms,
|
|
int* jitter_buffer_ms,
|
|
int* min_playout_delay_ms,
|
|
int* render_delay_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
*decode_ms = last_decode_ms_;
|
|
*max_decode_ms = RequiredDecodeTimeMs();
|
|
*current_delay_ms = current_delay_ms_;
|
|
*target_delay_ms = TargetDelayInternal();
|
|
*jitter_buffer_ms = jitter_delay_ms_;
|
|
*min_playout_delay_ms = min_playout_delay_ms_;
|
|
*render_delay_ms = render_delay_ms_;
|
|
}
|
|
|
|
} // namespace webrtc
|