
This CL adds support for an extension on RTP frames to allow the sender to specify the minimum and maximum playout delay limits. The receiver makes a best-effort attempt to keep the capture-to-render delay within this range. This allows different types of application to specify different end-to-end delay goals. For example gaming can support rendering of frames as soon as received on receiver to minimize delay. A movie playback application can specify a minimum playout delay to allow fixed buffering in presence of network jitter. There are no tests at this time and most of testing is done with chromium webrtc prototype. On chromoting performance tests, this extension helps bring down end-to-end delay by about 150 ms on small frames. BUG=webrtc:5895 Review-Url: https://codereview.webrtc.org/2007743003 Cr-Commit-Position: refs/heads/master@{#13059}
150 lines
5.3 KiB
C++
150 lines
5.3 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
#include "webrtc/modules/video_coding/include/video_coding.h"
|
|
#include "webrtc/modules/video_coding/internal_defines.h"
|
|
#include "webrtc/modules/video_coding/timing.h"
|
|
#include "webrtc/modules/video_coding/test/test_util.h"
|
|
#include "webrtc/system_wrappers/include/clock.h"
|
|
#include "webrtc/system_wrappers/include/trace.h"
|
|
#include "webrtc/test/testsupport/fileutils.h"
|
|
|
|
namespace webrtc {
|
|
|
|
TEST(ReceiverTiming, Tests) {
|
|
SimulatedClock clock(0);
|
|
VCMTiming timing(&clock);
|
|
uint32_t waitTime = 0;
|
|
uint32_t jitterDelayMs = 0;
|
|
uint32_t requiredDecodeTimeMs = 0;
|
|
uint32_t timeStamp = 0;
|
|
|
|
timing.Reset();
|
|
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
|
|
timing.Reset();
|
|
|
|
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
|
jitterDelayMs = 20;
|
|
timing.SetJitterDelay(jitterDelayMs);
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
timing.set_render_delay(0);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
// First update initializes the render time. Since we have no decode delay
|
|
// we get waitTime = renderTime - now - renderDelay = jitter.
|
|
EXPECT_EQ(jitterDelayMs, waitTime);
|
|
|
|
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
|
|
timeStamp += 90000;
|
|
clock.AdvanceTimeMilliseconds(1000);
|
|
timing.SetJitterDelay(jitterDelayMs);
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
// Since we gradually increase the delay we only get 100 ms every second.
|
|
EXPECT_EQ(jitterDelayMs - 10, waitTime);
|
|
|
|
timeStamp += 90000;
|
|
clock.AdvanceTimeMilliseconds(1000);
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(waitTime, jitterDelayMs);
|
|
|
|
// 300 incoming frames without jitter, verify that this gives the exact wait
|
|
// time.
|
|
for (int i = 0; i < 300; i++) {
|
|
clock.AdvanceTimeMilliseconds(1000 / 25);
|
|
timeStamp += 90000 / 25;
|
|
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
|
}
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(waitTime, jitterDelayMs);
|
|
|
|
// Add decode time estimates.
|
|
for (int i = 0; i < 10; i++) {
|
|
int64_t startTimeMs = clock.TimeInMilliseconds();
|
|
clock.AdvanceTimeMilliseconds(10);
|
|
timing.StopDecodeTimer(
|
|
timeStamp, clock.TimeInMilliseconds() - startTimeMs,
|
|
clock.TimeInMilliseconds(),
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()));
|
|
timeStamp += 90000 / 25;
|
|
clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
|
|
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
|
}
|
|
requiredDecodeTimeMs = 10;
|
|
timing.SetJitterDelay(jitterDelayMs);
|
|
clock.AdvanceTimeMilliseconds(1000);
|
|
timeStamp += 90000;
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(waitTime, jitterDelayMs);
|
|
|
|
int minTotalDelayMs = 200;
|
|
timing.set_min_playout_delay(minTotalDelayMs);
|
|
clock.AdvanceTimeMilliseconds(5000);
|
|
timeStamp += 5 * 90000;
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
const int kRenderDelayMs = 10;
|
|
timing.set_render_delay(kRenderDelayMs);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime
|
|
// (10) to wait.
|
|
EXPECT_EQ(waitTime, minTotalDelayMs - requiredDecodeTimeMs - kRenderDelayMs);
|
|
// The total video delay should be equal to the min total delay.
|
|
EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay());
|
|
|
|
// Reset playout delay.
|
|
timing.set_min_playout_delay(0);
|
|
clock.AdvanceTimeMilliseconds(5000);
|
|
timeStamp += 5 * 90000;
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
}
|
|
|
|
TEST(ReceiverTiming, WrapAround) {
|
|
const int kFramerate = 25;
|
|
SimulatedClock clock(0);
|
|
VCMTiming timing(&clock);
|
|
// Provoke a wrap-around. The forth frame will have wrapped at 25 fps.
|
|
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate;
|
|
for (int i = 0; i < 4; ++i) {
|
|
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
|
clock.AdvanceTimeMilliseconds(1000 / kFramerate);
|
|
timestamp += 90000 / kFramerate;
|
|
int64_t render_time =
|
|
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds());
|
|
EXPECT_EQ(3 * 1000 / kFramerate, render_time);
|
|
render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz.
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|