We are using the Ooura FFT in a few places: - AGC - Transient suppression - Noise suppression The optimized OpenMAX DL FFT is considerably faster, but currently does not compile everywhere, notably on iOS. This change will allow us to use Openmax when possible and otherwise fall back to Ooura. (Unfortunately, noise suppression won't be able to take advantage of it since it's not C++. Upgrade time?) R=aluebs@webrtc.org, mgraczyk@chromium.org Review URL: https://webrtc-codereview.appspot.com/45789004 Cr-Commit-Position: refs/heads/master@{#8798} git-svn-id: http://webrtc.googlecode.com/svn/trunk@8798 4adac7df-926f-26a2-2b94-8c16560cd09d
270 lines
10 KiB
C++
270 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/agc/agc_audio_proc.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "webrtc/common_audio/fft4g.h"
|
|
#include "webrtc/modules/audio_processing/agc/agc_audio_proc_internal.h"
|
|
#include "webrtc/modules/audio_processing/agc/pitch_internal.h"
|
|
#include "webrtc/modules/audio_processing/agc/pole_zero_filter.h"
|
|
extern "C" {
|
|
#include "webrtc/modules/audio_coding/codecs/isac/main/source/codec.h"
|
|
#include "webrtc/modules/audio_coding/codecs/isac/main/source/lpc_analysis.h"
|
|
#include "webrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
|
#include "webrtc/modules/audio_coding/codecs/isac/main/source/structs.h"
|
|
}
|
|
#include "webrtc/modules/interface/module_common_types.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// The following structures are declared anonymous in iSAC's structs.h. To
|
|
// forward declare them, we use this derived class trick.
|
|
struct AgcAudioProc::PitchAnalysisStruct : public ::PitchAnalysisStruct {};
|
|
struct AgcAudioProc::PreFiltBankstr : public ::PreFiltBankstr {};
|
|
|
|
static const float kFrequencyResolution = kSampleRateHz /
|
|
static_cast<float>(AgcAudioProc::kDftSize);
|
|
static const int kSilenceRms = 5;
|
|
|
|
// TODO(turajs): Make a Create or Init for AgcAudioProc.
|
|
AgcAudioProc::AgcAudioProc()
|
|
: audio_buffer_(),
|
|
num_buffer_samples_(kNumPastSignalSamples),
|
|
log_old_gain_(-2),
|
|
old_lag_(50), // Arbitrary but valid as pitch-lag (in samples).
|
|
pitch_analysis_handle_(new PitchAnalysisStruct),
|
|
pre_filter_handle_(new PreFiltBankstr),
|
|
high_pass_filter_(PoleZeroFilter::Create(
|
|
kCoeffNumerator, kFilterOrder, kCoeffDenominator, kFilterOrder)) {
|
|
static_assert(kNumPastSignalSamples + kNumSubframeSamples ==
|
|
sizeof(kLpcAnalWin) / sizeof(kLpcAnalWin[0]),
|
|
"lpc analysis window incorrect size");
|
|
static_assert(kLpcOrder + 1 == sizeof(kCorrWeight) / sizeof(kCorrWeight[0]),
|
|
"correlation weight incorrect size");
|
|
|
|
// TODO(turajs): Are we doing too much in the constructor?
|
|
float data[kDftSize];
|
|
// Make FFT to initialize.
|
|
ip_[0] = 0;
|
|
WebRtc_rdft(kDftSize, 1, data, ip_, w_fft_);
|
|
// TODO(turajs): Need to initialize high-pass filter.
|
|
|
|
// Initialize iSAC components.
|
|
WebRtcIsac_InitPreFilterbank(pre_filter_handle_.get());
|
|
WebRtcIsac_InitPitchAnalysis(pitch_analysis_handle_.get());
|
|
}
|
|
|
|
AgcAudioProc::~AgcAudioProc() {}
|
|
|
|
void AgcAudioProc::ResetBuffer() {
|
|
memcpy(audio_buffer_, &audio_buffer_[kNumSamplesToProcess],
|
|
sizeof(audio_buffer_[0]) * kNumPastSignalSamples);
|
|
num_buffer_samples_ = kNumPastSignalSamples;
|
|
}
|
|
|
|
int AgcAudioProc::ExtractFeatures(const int16_t* frame,
|
|
int length,
|
|
AudioFeatures* features) {
|
|
features->num_frames = 0;
|
|
if (length != kNumSubframeSamples) {
|
|
return -1;
|
|
}
|
|
|
|
// High-pass filter to remove the DC component and very low frequency content.
|
|
// We have experienced that this high-pass filtering improves voice/non-voiced
|
|
// classification.
|
|
if (high_pass_filter_->Filter(frame, kNumSubframeSamples,
|
|
&audio_buffer_[num_buffer_samples_]) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
num_buffer_samples_ += kNumSubframeSamples;
|
|
if (num_buffer_samples_ < kBufferLength) {
|
|
return 0;
|
|
}
|
|
assert(num_buffer_samples_ == kBufferLength);
|
|
features->num_frames = kNum10msSubframes;
|
|
features->silence = false;
|
|
|
|
Rms(features->rms, kMaxNumFrames);
|
|
for (int i = 0; i < kNum10msSubframes; ++i) {
|
|
if (features->rms[i] < kSilenceRms) {
|
|
// PitchAnalysis can cause NaNs in the pitch gain if it's fed silence.
|
|
// Bail out here instead.
|
|
features->silence = true;
|
|
ResetBuffer();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
PitchAnalysis(features->log_pitch_gain, features->pitch_lag_hz,
|
|
kMaxNumFrames);
|
|
FindFirstSpectralPeaks(features->spectral_peak, kMaxNumFrames);
|
|
ResetBuffer();
|
|
return 0;
|
|
}
|
|
|
|
// Computes |kLpcOrder + 1| correlation coefficients.
|
|
void AgcAudioProc::SubframeCorrelation(double* corr, int length_corr,
|
|
int subframe_index) {
|
|
assert(length_corr >= kLpcOrder + 1);
|
|
double windowed_audio[kNumSubframeSamples + kNumPastSignalSamples];
|
|
int buffer_index = subframe_index * kNumSubframeSamples;
|
|
|
|
for (int n = 0; n < kNumSubframeSamples + kNumPastSignalSamples; n++)
|
|
windowed_audio[n] = audio_buffer_[buffer_index++] * kLpcAnalWin[n];
|
|
|
|
WebRtcIsac_AutoCorr(corr, windowed_audio, kNumSubframeSamples +
|
|
kNumPastSignalSamples, kLpcOrder);
|
|
}
|
|
|
|
// Compute |kNum10msSubframes| sets of LPC coefficients, one per 10 ms input.
|
|
// The analysis window is 15 ms long and it is centered on the first half of
|
|
// each 10ms sub-frame. This is equivalent to computing LPC coefficients for the
|
|
// first half of each 10 ms subframe.
|
|
void AgcAudioProc::GetLpcPolynomials(double* lpc, int length_lpc) {
|
|
assert(length_lpc >= kNum10msSubframes * (kLpcOrder + 1));
|
|
double corr[kLpcOrder + 1];
|
|
double reflec_coeff[kLpcOrder];
|
|
for (int i = 0, offset_lpc = 0; i < kNum10msSubframes;
|
|
i++, offset_lpc += kLpcOrder + 1) {
|
|
SubframeCorrelation(corr, kLpcOrder + 1, i);
|
|
corr[0] *= 1.0001;
|
|
// This makes Lev-Durb a bit more stable.
|
|
for (int k = 0; k < kLpcOrder + 1; k++) {
|
|
corr[k] *= kCorrWeight[k];
|
|
}
|
|
WebRtcIsac_LevDurb(&lpc[offset_lpc], reflec_coeff, corr, kLpcOrder);
|
|
}
|
|
}
|
|
|
|
// Fit a second order curve to these 3 points and find the location of the
|
|
// extremum. The points are inverted before curve fitting.
|
|
static float QuadraticInterpolation(float prev_val, float curr_val,
|
|
float next_val) {
|
|
// Doing the interpolation in |1 / A(z)|^2.
|
|
float fractional_index = 0;
|
|
next_val = 1.0f / next_val;
|
|
prev_val = 1.0f / prev_val;
|
|
curr_val = 1.0f / curr_val;
|
|
|
|
fractional_index = -(next_val - prev_val) * 0.5f / (next_val + prev_val -
|
|
2.f * curr_val);
|
|
assert(fabs(fractional_index) < 1);
|
|
return fractional_index;
|
|
}
|
|
|
|
// 1 / A(z), where A(z) is defined by |lpc| is a model of the spectral envelope
|
|
// of the input signal. The local maximum of the spectral envelope corresponds
|
|
// with the local minimum of A(z). It saves complexity, as we save one
|
|
// inversion. Furthermore, we find the first local maximum of magnitude squared,
|
|
// to save on one square root.
|
|
void AgcAudioProc::FindFirstSpectralPeaks(double* f_peak, int length_f_peak) {
|
|
assert(length_f_peak >= kNum10msSubframes);
|
|
double lpc[kNum10msSubframes * (kLpcOrder + 1)];
|
|
// For all sub-frames.
|
|
GetLpcPolynomials(lpc, kNum10msSubframes * (kLpcOrder + 1));
|
|
|
|
const int kNumDftCoefficients = kDftSize / 2 + 1;
|
|
float data[kDftSize];
|
|
|
|
for (int i = 0; i < kNum10msSubframes; i++) {
|
|
// Convert to float with zero pad.
|
|
memset(data, 0, sizeof(data));
|
|
for (int n = 0; n < kLpcOrder + 1; n++) {
|
|
data[n] = static_cast<float>(lpc[i * (kLpcOrder + 1) + n]);
|
|
}
|
|
// Transform to frequency domain.
|
|
WebRtc_rdft(kDftSize, 1, data, ip_, w_fft_);
|
|
|
|
int index_peak = 0;
|
|
float prev_magn_sqr = data[0] * data[0];
|
|
float curr_magn_sqr = data[2] * data[2] + data[3] * data[3];
|
|
float next_magn_sqr;
|
|
bool found_peak = false;
|
|
for (int n = 2; n < kNumDftCoefficients - 1; n++) {
|
|
next_magn_sqr = data[2 * n] * data[2 * n] +
|
|
data[2 * n + 1] * data[2 * n + 1];
|
|
if (curr_magn_sqr < prev_magn_sqr && curr_magn_sqr < next_magn_sqr) {
|
|
found_peak = true;
|
|
index_peak = n - 1;
|
|
break;
|
|
}
|
|
prev_magn_sqr = curr_magn_sqr;
|
|
curr_magn_sqr = next_magn_sqr;
|
|
}
|
|
float fractional_index = 0;
|
|
if (!found_peak) {
|
|
// Checking if |kNumDftCoefficients - 1| is the local minimum.
|
|
next_magn_sqr = data[1] * data[1];
|
|
if (curr_magn_sqr < prev_magn_sqr && curr_magn_sqr < next_magn_sqr) {
|
|
index_peak = kNumDftCoefficients - 1;
|
|
}
|
|
} else {
|
|
// A peak is found, do a simple quadratic interpolation to get a more
|
|
// accurate estimate of the peak location.
|
|
fractional_index = QuadraticInterpolation(prev_magn_sqr, curr_magn_sqr,
|
|
next_magn_sqr);
|
|
}
|
|
f_peak[i] = (index_peak + fractional_index) * kFrequencyResolution;
|
|
}
|
|
}
|
|
|
|
// Using iSAC functions to estimate pitch gains & lags.
|
|
void AgcAudioProc::PitchAnalysis(double* log_pitch_gains, double* pitch_lags_hz,
|
|
int length) {
|
|
// TODO(turajs): This can be "imported" from iSAC & and the next two
|
|
// constants.
|
|
assert(length >= kNum10msSubframes);
|
|
const int kNumPitchSubframes = 4;
|
|
double gains[kNumPitchSubframes];
|
|
double lags[kNumPitchSubframes];
|
|
|
|
const int kNumSubbandFrameSamples = 240;
|
|
const int kNumLookaheadSamples = 24;
|
|
|
|
float lower[kNumSubbandFrameSamples];
|
|
float upper[kNumSubbandFrameSamples];
|
|
double lower_lookahead[kNumSubbandFrameSamples];
|
|
double upper_lookahead[kNumSubbandFrameSamples];
|
|
double lower_lookahead_pre_filter[kNumSubbandFrameSamples +
|
|
kNumLookaheadSamples];
|
|
|
|
// Split signal to lower and upper bands
|
|
WebRtcIsac_SplitAndFilterFloat(&audio_buffer_[kNumPastSignalSamples],
|
|
lower, upper, lower_lookahead, upper_lookahead,
|
|
pre_filter_handle_.get());
|
|
WebRtcIsac_PitchAnalysis(lower_lookahead, lower_lookahead_pre_filter,
|
|
pitch_analysis_handle_.get(), lags, gains);
|
|
|
|
// Lags are computed on lower-band signal with sampling rate half of the
|
|
// input signal.
|
|
GetSubframesPitchParameters(kSampleRateHz / 2, gains, lags,
|
|
kNumPitchSubframes, kNum10msSubframes,
|
|
&log_old_gain_, &old_lag_,
|
|
log_pitch_gains, pitch_lags_hz);
|
|
}
|
|
|
|
void AgcAudioProc::Rms(double* rms, int length_rms) {
|
|
assert(length_rms >= kNum10msSubframes);
|
|
int offset = kNumPastSignalSamples;
|
|
for (int i = 0; i < kNum10msSubframes; i++) {
|
|
rms[i] = 0;
|
|
for (int n = 0; n < kNumSubframeSamples; n++, offset++)
|
|
rms[i] += audio_buffer_[offset] * audio_buffer_[offset];
|
|
rms[i] = sqrt(rms[i] / kNumSubframeSamples);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|