
Removes the use of uint8, etc. in favor of uint8_t. BUG=webrtc:5024 R=henrik.lundin@webrtc.org, henrikg@webrtc.org, perkj@webrtc.org, solenberg@webrtc.org, stefan@webrtc.org, tina.legrand@webrtc.org Review URL: https://codereview.webrtc.org/1362503003 . Cr-Commit-Position: refs/heads/master@{#10196}
566 lines
23 KiB
C++
566 lines
23 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.h"
|
|
|
|
#include <vector>
|
|
|
|
#include "webrtc/base/bitbuffer.h"
|
|
#include "webrtc/base/bytebuffer.h"
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/scoped_ptr.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
// The size of a NALU header {0 0 0 1}.
|
|
static const size_t kNaluHeaderSize = 4;
|
|
|
|
// The size of a NALU header plus the type byte.
|
|
static const size_t kNaluHeaderAndTypeSize = kNaluHeaderSize + 1;
|
|
|
|
// The NALU type.
|
|
static const uint8_t kNaluSps = 0x7;
|
|
static const uint8_t kNaluPps = 0x8;
|
|
static const uint8_t kNaluIdr = 0x5;
|
|
static const uint8_t kNaluTypeMask = 0x1F;
|
|
|
|
static const uint8_t kSliceTypeP = 0x0;
|
|
static const uint8_t kSliceTypeB = 0x1;
|
|
static const uint8_t kSliceTypeSp = 0x3;
|
|
|
|
// Returns a vector of the NALU start sequences (0 0 0 1) in the given buffer.
|
|
std::vector<size_t> FindNaluStartSequences(const uint8_t* buffer,
|
|
size_t buffer_size) {
|
|
std::vector<size_t> sequences;
|
|
// This is sorta like Boyer-Moore, but with only the first optimization step:
|
|
// given a 4-byte sequence we're looking at, if the 4th byte isn't 1 or 0,
|
|
// skip ahead to the next 4-byte sequence. 0s and 1s are relatively rare, so
|
|
// this will skip the majority of reads/checks.
|
|
const uint8_t* end = buffer + buffer_size - 4;
|
|
for (const uint8_t* head = buffer; head < end;) {
|
|
if (head[3] > 1) {
|
|
head += 4;
|
|
} else if (head[3] == 1 && head[2] == 0 && head[1] == 0 && head[0] == 0) {
|
|
sequences.push_back(static_cast<size_t>(head - buffer));
|
|
head += 4;
|
|
} else {
|
|
head++;
|
|
}
|
|
}
|
|
|
|
return sequences;
|
|
}
|
|
} // namespace
|
|
|
|
// Parses RBSP from source bytes. Removes emulation bytes, but leaves the
|
|
// rbsp_trailing_bits() in the stream, since none of the parsing reads all the
|
|
// way to the end of a parsed RBSP sequence. When writing, that means the
|
|
// rbsp_trailing_bits() should be preserved and don't need to be restored (i.e.
|
|
// the rbsp_stop_one_bit, which is just a 1, then zero padded), and alignment
|
|
// should "just work".
|
|
// TODO(pbos): Make parsing RBSP something that can be integrated into BitBuffer
|
|
// so we don't have to copy the entire frames when only interested in the
|
|
// headers.
|
|
rtc::ByteBuffer* ParseRbsp(const uint8_t* bytes, size_t length) {
|
|
// Copied from webrtc::H264SpsParser::Parse.
|
|
rtc::ByteBuffer* rbsp_buffer = new rtc::ByteBuffer;
|
|
for (size_t i = 0; i < length;) {
|
|
if (length - i >= 3 && bytes[i] == 0 && bytes[i + 1] == 0 &&
|
|
bytes[i + 2] == 3) {
|
|
rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 2);
|
|
i += 3;
|
|
} else {
|
|
rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 1);
|
|
i++;
|
|
}
|
|
}
|
|
return rbsp_buffer;
|
|
}
|
|
|
|
#define RETURN_FALSE_ON_FAIL(x) \
|
|
if (!(x)) { \
|
|
LOG_F(LS_ERROR) << "FAILED: " #x; \
|
|
return false; \
|
|
}
|
|
|
|
H264BitstreamParser::PpsState::PpsState() {}
|
|
|
|
H264BitstreamParser::SpsState::SpsState() {}
|
|
|
|
// These functions are similar to webrtc::H264SpsParser::Parse, and based on the
|
|
// same version of the H.264 standard. You can find it here:
|
|
// http://www.itu.int/rec/T-REC-H.264
|
|
bool H264BitstreamParser::ParseSpsNalu(const uint8_t* sps, size_t length) {
|
|
// Reset SPS state.
|
|
sps_ = SpsState();
|
|
sps_parsed_ = false;
|
|
// Parse out the SPS RBSP. It should be small, so it's ok that we create a
|
|
// copy. We'll eventually write this back.
|
|
rtc::scoped_ptr<rtc::ByteBuffer> sps_rbsp(
|
|
ParseRbsp(sps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize));
|
|
rtc::BitBuffer sps_parser(reinterpret_cast<const uint8_t*>(sps_rbsp->Data()),
|
|
sps_rbsp->Length());
|
|
|
|
uint8_t byte_tmp;
|
|
uint32_t golomb_tmp;
|
|
uint32_t bits_tmp;
|
|
|
|
// profile_idc: u(8).
|
|
uint8_t profile_idc;
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&profile_idc));
|
|
// constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits
|
|
// 1 bit each for the flags + 2 bits = 8 bits = 1 byte.
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp));
|
|
// level_idc: u(8)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp));
|
|
// seq_parameter_set_id: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
sps_.separate_colour_plane_flag = 0;
|
|
// See if profile_idc has chroma format information.
|
|
if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 ||
|
|
profile_idc == 244 || profile_idc == 44 || profile_idc == 83 ||
|
|
profile_idc == 86 || profile_idc == 118 || profile_idc == 128 ||
|
|
profile_idc == 138 || profile_idc == 139 || profile_idc == 134) {
|
|
// chroma_format_idc: ue(v)
|
|
uint32_t chroma_format_idc;
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&chroma_format_idc));
|
|
if (chroma_format_idc == 3) {
|
|
// separate_colour_plane_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadBits(&sps_.separate_colour_plane_flag, 1));
|
|
}
|
|
// bit_depth_luma_minus8: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
// bit_depth_chroma_minus8: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
// qpprime_y_zero_transform_bypass_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1));
|
|
// seq_scaling_matrix_present_flag: u(1)
|
|
uint32_t seq_scaling_matrix_present_flag;
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadBits(&seq_scaling_matrix_present_flag, 1));
|
|
if (seq_scaling_matrix_present_flag) {
|
|
// seq_scaling_list_present_flags. Either 8 or 12, depending on
|
|
// chroma_format_idc.
|
|
uint32_t seq_scaling_list_present_flags;
|
|
if (chroma_format_idc != 3) {
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadBits(&seq_scaling_list_present_flags, 8));
|
|
} else {
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadBits(&seq_scaling_list_present_flags, 12));
|
|
}
|
|
// TODO(pbos): Support parsing scaling lists if they're seen in practice.
|
|
RTC_CHECK(seq_scaling_list_present_flags == 0)
|
|
<< "SPS contains scaling lists, which are unsupported.";
|
|
}
|
|
}
|
|
// log2_max_frame_num_minus4: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadExponentialGolomb(&sps_.log2_max_frame_num_minus4));
|
|
// pic_order_cnt_type: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadExponentialGolomb(&sps_.pic_order_cnt_type));
|
|
|
|
if (sps_.pic_order_cnt_type == 0) {
|
|
// log2_max_pic_order_cnt_lsb_minus4: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(
|
|
&sps_.log2_max_pic_order_cnt_lsb_minus4));
|
|
} else if (sps_.pic_order_cnt_type == 1) {
|
|
// delta_pic_order_always_zero_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(
|
|
sps_parser.ReadBits(&sps_.delta_pic_order_always_zero_flag, 1));
|
|
// offset_for_non_ref_pic: se(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
// offset_for_top_to_bottom_field: se(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
uint32_t num_ref_frames_in_pic_order_cnt_cycle;
|
|
// num_ref_frames_in_pic_order_cnt_cycle: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(
|
|
&num_ref_frames_in_pic_order_cnt_cycle));
|
|
for (uint32_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) {
|
|
// offset_for_ref_frame[i]: se(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
}
|
|
// max_num_ref_frames: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
// gaps_in_frame_num_value_allowed_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1));
|
|
// pic_width_in_mbs_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
// pic_height_in_map_units_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
|
|
// frame_mbs_only_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&sps_.frame_mbs_only_flag, 1));
|
|
sps_parsed_ = true;
|
|
return true;
|
|
}
|
|
|
|
bool H264BitstreamParser::ParsePpsNalu(const uint8_t* pps, size_t length) {
|
|
RTC_CHECK(sps_parsed_);
|
|
// We're starting a new stream, so reset picture type rewriting values.
|
|
pps_ = PpsState();
|
|
pps_parsed_ = false;
|
|
rtc::scoped_ptr<rtc::ByteBuffer> buffer(
|
|
ParseRbsp(pps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize));
|
|
rtc::BitBuffer parser(reinterpret_cast<const uint8_t*>(buffer->Data()),
|
|
buffer->Length());
|
|
|
|
uint32_t bits_tmp;
|
|
uint32_t golomb_ignored;
|
|
// pic_parameter_set_id: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// seq_parameter_set_id: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// entropy_coding_mode_flag: u(1)
|
|
uint32_t entropy_coding_mode_flag;
|
|
RETURN_FALSE_ON_FAIL(parser.ReadBits(&entropy_coding_mode_flag, 1));
|
|
// TODO(pbos): Implement CABAC support if spotted in the wild.
|
|
RTC_CHECK(entropy_coding_mode_flag == 0)
|
|
<< "Don't know how to parse CABAC streams.";
|
|
// bottom_field_pic_order_in_frame_present_flag: u(1)
|
|
uint32_t bottom_field_pic_order_in_frame_present_flag;
|
|
RETURN_FALSE_ON_FAIL(
|
|
parser.ReadBits(&bottom_field_pic_order_in_frame_present_flag, 1));
|
|
pps_.bottom_field_pic_order_in_frame_present_flag =
|
|
bottom_field_pic_order_in_frame_present_flag != 0;
|
|
|
|
// num_slice_groups_minus1: ue(v)
|
|
uint32_t num_slice_groups_minus1;
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&num_slice_groups_minus1));
|
|
if (num_slice_groups_minus1 > 0) {
|
|
uint32_t slice_group_map_type;
|
|
// slice_group_map_type: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&slice_group_map_type));
|
|
if (slice_group_map_type == 0) {
|
|
for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
|
|
++i_group) {
|
|
// run_length_minus1[iGroup]: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
}
|
|
} else if (slice_group_map_type == 2) {
|
|
for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
|
|
++i_group) {
|
|
// top_left[iGroup]: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// bottom_right[iGroup]: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
}
|
|
} else if (slice_group_map_type == 3 || slice_group_map_type == 4 ||
|
|
slice_group_map_type == 5) {
|
|
// slice_group_change_direction_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 1));
|
|
// slice_group_change_rate_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
} else if (slice_group_map_type == 6) {
|
|
// pic_size_in_map_units_minus1: ue(v)
|
|
uint32_t pic_size_in_map_units_minus1;
|
|
RETURN_FALSE_ON_FAIL(
|
|
parser.ReadExponentialGolomb(&pic_size_in_map_units_minus1));
|
|
uint32_t slice_group_id_bits = 0;
|
|
uint32_t num_slice_groups = num_slice_groups_minus1 + 1;
|
|
// If num_slice_groups is not a power of two an additional bit is required
|
|
// to account for the ceil() of log2() below.
|
|
if ((num_slice_groups & (num_slice_groups - 1)) != 0)
|
|
++slice_group_id_bits;
|
|
while (num_slice_groups > 0) {
|
|
num_slice_groups >>= 1;
|
|
++slice_group_id_bits;
|
|
}
|
|
for (uint32_t i = 0; i <= pic_size_in_map_units_minus1; i++) {
|
|
// slice_group_id[i]: u(v)
|
|
// Represented by ceil(log2(num_slice_groups_minus1 + 1)) bits.
|
|
RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, slice_group_id_bits));
|
|
}
|
|
}
|
|
}
|
|
// num_ref_idx_l0_default_active_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// num_ref_idx_l1_default_active_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// weighted_pred_flag: u(1)
|
|
uint32_t weighted_pred_flag;
|
|
RETURN_FALSE_ON_FAIL(parser.ReadBits(&weighted_pred_flag, 1));
|
|
pps_.weighted_pred_flag = weighted_pred_flag != 0;
|
|
// weighted_bipred_idc: u(2)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadBits(&pps_.weighted_bipred_idc, 2));
|
|
|
|
// pic_init_qp_minus26: se(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
parser.ReadSignedExponentialGolomb(&pps_.pic_init_qp_minus26));
|
|
// pic_init_qs_minus26: se(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// chroma_qp_index_offset: se(v)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
|
|
// deblocking_filter_control_present_flag: u(1)
|
|
// constrained_intra_pred_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 2));
|
|
// redundant_pic_cnt_present_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(
|
|
parser.ReadBits(&pps_.redundant_pic_cnt_present_flag, 1));
|
|
|
|
pps_parsed_ = true;
|
|
return true;
|
|
}
|
|
|
|
bool H264BitstreamParser::ParseNonParameterSetNalu(const uint8_t* source,
|
|
size_t source_length,
|
|
uint8_t nalu_type) {
|
|
RTC_CHECK(sps_parsed_);
|
|
RTC_CHECK(pps_parsed_);
|
|
last_slice_qp_delta_parsed_ = false;
|
|
rtc::scoped_ptr<rtc::ByteBuffer> slice_rbsp(ParseRbsp(
|
|
source + kNaluHeaderAndTypeSize, source_length - kNaluHeaderAndTypeSize));
|
|
rtc::BitBuffer slice_reader(
|
|
reinterpret_cast<const uint8_t*>(slice_rbsp->Data()),
|
|
slice_rbsp->Length());
|
|
// Check to see if this is an IDR slice, which has an extra field to parse
|
|
// out.
|
|
bool is_idr = (source[kNaluHeaderSize] & 0x0F) == kNaluIdr;
|
|
uint8_t nal_ref_idc = (source[kNaluHeaderSize] & 0x60) >> 5;
|
|
uint32_t golomb_tmp;
|
|
uint32_t bits_tmp;
|
|
|
|
// first_mb_in_slice: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
// slice_type: ue(v)
|
|
uint32_t slice_type;
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&slice_type));
|
|
// slice_type's 5..9 range is used to indicate that all slices of a picture
|
|
// have the same value of slice_type % 5, we don't care about that, so we map
|
|
// to the corresponding 0..4 range.
|
|
slice_type %= 5;
|
|
// pic_parameter_set_id: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
if (sps_.separate_colour_plane_flag == 1) {
|
|
// colour_plane_id
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2));
|
|
}
|
|
// frame_num: u(v)
|
|
// Represented by log2_max_frame_num_minus4 + 4 bits.
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadBits(&bits_tmp, sps_.log2_max_frame_num_minus4 + 4));
|
|
uint32_t field_pic_flag = 0;
|
|
if (sps_.frame_mbs_only_flag == 0) {
|
|
// field_pic_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&field_pic_flag, 1));
|
|
if (field_pic_flag != 0) {
|
|
// bottom_field_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1));
|
|
}
|
|
}
|
|
if (is_idr) {
|
|
// idr_pic_id: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
// pic_order_cnt_lsb: u(v)
|
|
// Represented by sps_.log2_max_pic_order_cnt_lsb_minus4 + 4 bits.
|
|
if (sps_.pic_order_cnt_type == 0) {
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(
|
|
&bits_tmp, sps_.log2_max_pic_order_cnt_lsb_minus4 + 4));
|
|
if (pps_.bottom_field_pic_order_in_frame_present_flag &&
|
|
field_pic_flag == 0) {
|
|
// delta_pic_order_cnt_bottom: se(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
}
|
|
if (sps_.pic_order_cnt_type == 1 && !sps_.delta_pic_order_always_zero_flag) {
|
|
// delta_pic_order_cnt[0]: se(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
if (pps_.bottom_field_pic_order_in_frame_present_flag && !field_pic_flag) {
|
|
// delta_pic_order_cnt[1]: se(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
}
|
|
if (pps_.redundant_pic_cnt_present_flag) {
|
|
// redundant_pic_cnt: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
if (slice_type == kSliceTypeB) {
|
|
// direct_spatial_mv_pred_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1));
|
|
}
|
|
if (slice_type == kSliceTypeP || slice_type == kSliceTypeSp ||
|
|
slice_type == kSliceTypeB) {
|
|
uint32_t num_ref_idx_active_override_flag;
|
|
// num_ref_idx_active_override_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadBits(&num_ref_idx_active_override_flag, 1));
|
|
if (num_ref_idx_active_override_flag != 0) {
|
|
// num_ref_idx_l0_active_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
if (slice_type == kSliceTypeB) {
|
|
// num_ref_idx_l1_active_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
}
|
|
}
|
|
// assume nal_unit_type != 20 && nal_unit_type != 21:
|
|
RTC_CHECK_NE(nalu_type, 20);
|
|
RTC_CHECK_NE(nalu_type, 21);
|
|
// if (nal_unit_type == 20 || nal_unit_type == 21)
|
|
// ref_pic_list_mvc_modification()
|
|
// else
|
|
{
|
|
// ref_pic_list_modification():
|
|
// |slice_type| checks here don't use named constants as they aren't named
|
|
// in the spec for this segment. Keeping them consistent makes it easier to
|
|
// verify that they are both the same.
|
|
if (slice_type % 5 != 2 && slice_type % 5 != 4) {
|
|
// ref_pic_list_modification_flag_l0: u(1)
|
|
uint32_t ref_pic_list_modification_flag_l0;
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadBits(&ref_pic_list_modification_flag_l0, 1));
|
|
if (ref_pic_list_modification_flag_l0) {
|
|
uint32_t modification_of_pic_nums_idc;
|
|
do {
|
|
// modification_of_pic_nums_idc: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(
|
|
&modification_of_pic_nums_idc));
|
|
if (modification_of_pic_nums_idc == 0 ||
|
|
modification_of_pic_nums_idc == 1) {
|
|
// abs_diff_pic_num_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
} else if (modification_of_pic_nums_idc == 2) {
|
|
// long_term_pic_num: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
} while (modification_of_pic_nums_idc != 3);
|
|
}
|
|
}
|
|
if (slice_type % 5 == 1) {
|
|
// ref_pic_list_modification_flag_l1: u(1)
|
|
uint32_t ref_pic_list_modification_flag_l1;
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadBits(&ref_pic_list_modification_flag_l1, 1));
|
|
if (ref_pic_list_modification_flag_l1) {
|
|
uint32_t modification_of_pic_nums_idc;
|
|
do {
|
|
// modification_of_pic_nums_idc: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(
|
|
&modification_of_pic_nums_idc));
|
|
if (modification_of_pic_nums_idc == 0 ||
|
|
modification_of_pic_nums_idc == 1) {
|
|
// abs_diff_pic_num_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
} else if (modification_of_pic_nums_idc == 2) {
|
|
// long_term_pic_num: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
} while (modification_of_pic_nums_idc != 3);
|
|
}
|
|
}
|
|
}
|
|
// TODO(pbos): Do we need support for pred_weight_table()?
|
|
RTC_CHECK(!((pps_.weighted_pred_flag &&
|
|
(slice_type == kSliceTypeP || slice_type == kSliceTypeSp)) ||
|
|
(pps_.weighted_bipred_idc != 0 && slice_type == kSliceTypeB)))
|
|
<< "Missing support for pred_weight_table().";
|
|
// if ((weighted_pred_flag && (slice_type == P || slice_type == SP)) ||
|
|
// (weighted_bipred_idc == 1 && slice_type == B)) {
|
|
// pred_weight_table()
|
|
// }
|
|
if (nal_ref_idc != 0) {
|
|
// dec_ref_pic_marking():
|
|
if (is_idr) {
|
|
// no_output_of_prior_pics_flag: u(1)
|
|
// long_term_reference_flag: u(1)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2));
|
|
} else {
|
|
// adaptive_ref_pic_marking_mode_flag: u(1)
|
|
uint32_t adaptive_ref_pic_marking_mode_flag;
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadBits(&adaptive_ref_pic_marking_mode_flag, 1));
|
|
if (adaptive_ref_pic_marking_mode_flag) {
|
|
uint32_t memory_management_control_operation;
|
|
do {
|
|
// memory_management_control_operation: ue(v)
|
|
RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(
|
|
&memory_management_control_operation));
|
|
if (memory_management_control_operation == 1 ||
|
|
memory_management_control_operation == 3) {
|
|
// difference_of_pic_nums_minus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
if (memory_management_control_operation == 2) {
|
|
// long_term_pic_num: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
if (memory_management_control_operation == 3 ||
|
|
memory_management_control_operation == 6) {
|
|
// long_term_frame_idx: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
if (memory_management_control_operation == 4) {
|
|
// max_long_term_frame_idx_plus1: ue(v)
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadExponentialGolomb(&golomb_tmp));
|
|
}
|
|
} while (memory_management_control_operation != 0);
|
|
}
|
|
}
|
|
}
|
|
// cabac not supported: entropy_coding_mode_flag == 0 asserted above.
|
|
// if (entropy_coding_mode_flag && slice_type != I && slice_type != SI)
|
|
// cabac_init_idc
|
|
RETURN_FALSE_ON_FAIL(
|
|
slice_reader.ReadSignedExponentialGolomb(&last_slice_qp_delta_));
|
|
last_slice_qp_delta_parsed_ = true;
|
|
return true;
|
|
}
|
|
|
|
void H264BitstreamParser::ParseSlice(const uint8_t* slice, size_t length) {
|
|
uint8_t nalu_type = slice[4] & kNaluTypeMask;
|
|
switch (nalu_type) {
|
|
case kNaluSps:
|
|
RTC_CHECK(ParseSpsNalu(slice, length))
|
|
<< "Failed to parse bitstream SPS.";
|
|
break;
|
|
case kNaluPps:
|
|
RTC_CHECK(ParsePpsNalu(slice, length))
|
|
<< "Failed to parse bitstream PPS.";
|
|
break;
|
|
default:
|
|
RTC_CHECK(ParseNonParameterSetNalu(slice, length, nalu_type))
|
|
<< "Failed to parse picture slice.";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void H264BitstreamParser::ParseBitstream(const uint8_t* bitstream,
|
|
size_t length) {
|
|
RTC_CHECK_GE(length, 4u);
|
|
std::vector<size_t> slice_markers = FindNaluStartSequences(bitstream, length);
|
|
RTC_CHECK(!slice_markers.empty());
|
|
for (size_t i = 0; i < slice_markers.size() - 1; ++i) {
|
|
ParseSlice(bitstream + slice_markers[i],
|
|
slice_markers[i + 1] - slice_markers[i]);
|
|
}
|
|
// Parse the last slice.
|
|
ParseSlice(bitstream + slice_markers.back(), length - slice_markers.back());
|
|
}
|
|
|
|
bool H264BitstreamParser::GetLastSliceQp(int* qp) const {
|
|
if (!last_slice_qp_delta_parsed_)
|
|
return false;
|
|
*qp = 26 + pps_.pic_init_qp_minus26 + last_slice_qp_delta_;
|
|
return true;
|
|
}
|
|
|
|
} // namespace webrtc
|