Files
platform-external-webrtc/sdk/android/src/jni/androidmediaencoder.cc
Erik Språng 6528d8a954 In Android encoders, cache EncoderInfo in InitEncode.
GetEncoderInfo() is now called every frame, so we should not do
expensive parsing or logging in there. Instead, prepare an EncoderInfo
instance in InitEncode() and just return that in GetEncoderInfo().

Bug: webrtc:9890
Change-Id: Idc9e79e681c6f7ff4f9b446aa298c156f25bc6f6
Reviewed-on: https://webrtc-review.googlesource.com/c/110161
Reviewed-by: Sami Kalliomäki <sakal@webrtc.org>
Commit-Queue: Erik Språng <sprang@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#25569}
2018-11-08 16:40:01 +00:00

1251 lines
48 KiB
C++

/*
* Copyright 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <list>
#include <memory>
#include <string>
#include <utility>
#include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_encoder.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/h264/h264_bitstream_parser.h"
#include "common_video/h264/h264_common.h"
#include "common_video/h264/profile_level_id.h"
#include "media/base/codec.h"
#include "media/base/mediaconstants.h"
#include "media/engine/internalencoderfactory.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "modules/video_coding/utility/vp8_header_parser.h"
#include "modules/video_coding/utility/vp9_uncompressed_header_parser.h"
#include "rtc_base/bind.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/sequenced_task_checker.h"
#include "rtc_base/task_queue.h"
#include "rtc_base/thread.h"
#include "rtc_base/timeutils.h"
#include "rtc_base/weak_ptr.h"
#include "sdk/android/generated_video_jni/jni/MediaCodecVideoEncoder_jni.h"
#include "sdk/android/native_api/jni/java_types.h"
#include "sdk/android/src/jni/androidmediacodeccommon.h"
#include "sdk/android/src/jni/jni_helpers.h"
#include "sdk/android/src/jni/videocodecinfo.h"
#include "sdk/android/src/jni/videoframe.h"
#include "system_wrappers/include/field_trial.h"
#include "third_party/libyuv/include/libyuv/convert.h"
#include "third_party/libyuv/include/libyuv/convert_from.h"
#include "third_party/libyuv/include/libyuv/video_common.h"
using rtc::Bind;
using rtc::Thread;
using rtc::ThreadManager;
namespace webrtc {
namespace jni {
// Maximum supported HW video encoder fps.
#define MAX_VIDEO_FPS 30
// Maximum allowed fps value in SetRates() call.
#define MAX_ALLOWED_VIDEO_FPS 60
// Maximum allowed frames in encoder input queue.
#define MAX_ENCODER_Q_SIZE 2
// Maximum amount of dropped frames caused by full encoder queue - exceeding
// this threshold means that encoder probably got stuck and need to be reset.
#define ENCODER_STALL_FRAMEDROP_THRESHOLD 60
// Logging macros.
#define TAG_ENCODER "MediaCodecVideoEncoder"
#ifdef TRACK_BUFFER_TIMING
#define ALOGV(...)
__android_log_print(ANDROID_LOG_VERBOSE, TAG_ENCODER, __VA_ARGS__)
#else
#define ALOGV(...)
#endif
#define ALOGD RTC_LOG_TAG(rtc::LS_INFO, TAG_ENCODER)
#define ALOGW RTC_LOG_TAG(rtc::LS_WARNING, TAG_ENCODER)
#define ALOGE RTC_LOG_TAG(rtc::LS_ERROR, TAG_ENCODER)
namespace {
// Maximum time limit between incoming frames before requesting a key frame.
const int64_t kFrameDiffThresholdMs = 350;
const int kMinKeyFrameInterval = 6;
const char kCustomQPThresholdsFieldTrial[] = "WebRTC-CustomQPThresholds";
} // namespace
// MediaCodecVideoEncoder is a VideoEncoder implementation that uses
// Android's MediaCodec SDK API behind the scenes to implement (hopefully)
// HW-backed video encode. This C++ class is implemented as a very thin shim,
// delegating all of the interesting work to org.webrtc.MediaCodecVideoEncoder.
// MediaCodecVideoEncoder must be operated on a single task queue, currently
// this is the encoder queue from ViE encoder.
class MediaCodecVideoEncoder : public VideoEncoder {
public:
~MediaCodecVideoEncoder() override;
MediaCodecVideoEncoder(JNIEnv* jni,
const SdpVideoFormat& format,
bool has_egl_context);
// VideoEncoder implementation.
int32_t InitEncode(const VideoCodec* codec_settings,
int32_t /* number_of_cores */,
size_t /* max_payload_size */) override;
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* /* codec_specific_info */,
const std::vector<FrameType>* frame_types) override;
int32_t RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) override;
int32_t Release() override;
int32_t SetRateAllocation(const VideoBitrateAllocation& rate_allocation,
uint32_t frame_rate) override;
EncoderInfo GetEncoderInfo() const override;
// Fills the input buffer with data from the buffers passed as parameters.
bool FillInputBuffer(JNIEnv* jni,
int input_buffer_index,
uint8_t const* buffer_y,
int stride_y,
uint8_t const* buffer_u,
int stride_u,
uint8_t const* buffer_v,
int stride_v);
private:
class EncodeTask : public rtc::QueuedTask {
public:
explicit EncodeTask(rtc::WeakPtr<MediaCodecVideoEncoder> encoder);
bool Run() override;
private:
rtc::WeakPtr<MediaCodecVideoEncoder> encoder_;
};
// ResetCodec() calls Release() and InitEncodeInternal() in an attempt to
// restore the codec to an operable state. Necessary after all manner of
// OMX-layer errors. Returns true if the codec was reset successfully.
bool ResetCodec();
// Fallback to a software encoder if one is supported else try to reset the
// encoder. Called with |reset_if_fallback_unavailable| equal to false from
// init/release encoder so that we don't go into infinite recursion.
// Returns true if the codec was reset successfully.
bool ProcessHWError(bool reset_if_fallback_unavailable);
// Calls ProcessHWError(true). Returns WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE if
// sw_fallback_required_ was set or WEBRTC_VIDEO_CODEC_ERROR otherwise.
int32_t ProcessHWErrorOnEncode();
// If width==0 then this is assumed to be a re-initialization and the
// previously-current values are reused instead of the passed parameters
// (makes it easier to reason about thread-safety).
int32_t InitEncodeInternal(int width,
int height,
int kbps,
int fps,
bool use_surface);
// Reconfigure to match |frame| in width, height. Also reconfigures the
// encoder if |frame| is a texture/byte buffer and the encoder is initialized
// for byte buffer/texture. Returns false if reconfiguring fails.
bool MaybeReconfigureEncoder(JNIEnv* jni, const VideoFrame& frame);
// Returns true if the frame is a texture frame and we should use surface
// based encoding.
bool IsTextureFrame(JNIEnv* jni, const VideoFrame& frame);
bool EncodeByteBuffer(JNIEnv* jni,
bool key_frame,
const VideoFrame& frame,
int input_buffer_index);
// Encodes a new style org.webrtc.VideoFrame. Might be a I420 or a texture
// frame.
bool EncodeJavaFrame(JNIEnv* jni,
bool key_frame,
const JavaRef<jobject>& frame,
int input_buffer_index);
// Deliver any outputs pending in the MediaCodec to our |callback_| and return
// true on success.
bool DeliverPendingOutputs(JNIEnv* jni);
VideoEncoder::ScalingSettings GetScalingSettingsInternal() const;
// Displays encoder statistics.
void LogStatistics(bool force_log);
VideoCodecType GetCodecType() const;
#if RTC_DCHECK_IS_ON
// Mutex for protecting inited_. It is only used for correctness checking on
// debug build. It is used for checking that encoder has been released in the
// destructor. Because this might happen on a different thread, we need a
// mutex.
rtc::CriticalSection inited_crit_;
#endif
// Type of video codec.
const SdpVideoFormat format_;
EncodedImageCallback* callback_;
// State that is constant for the lifetime of this object once the ctor
// returns.
rtc::SequencedTaskChecker encoder_queue_checker_;
ScopedJavaGlobalRef<jobject> j_media_codec_video_encoder_;
// State that is valid only between InitEncode() and the next Release().
int width_; // Frame width in pixels.
int height_; // Frame height in pixels.
bool inited_;
bool use_surface_;
enum libyuv::FourCC encoder_fourcc_; // Encoder color space format.
uint32_t last_set_bitrate_kbps_; // Last-requested bitrate in kbps.
uint32_t last_set_fps_; // Last-requested frame rate.
int64_t current_timestamp_us_; // Current frame timestamps in us.
int frames_received_; // Number of frames received by encoder.
int frames_encoded_; // Number of frames encoded by encoder.
int frames_dropped_media_encoder_; // Number of frames dropped by encoder.
// Number of dropped frames caused by full queue.
int consecutive_full_queue_frame_drops_;
int64_t stat_start_time_ms_; // Start time for statistics.
int current_frames_; // Number of frames in the current statistics interval.
int current_bytes_; // Encoded bytes in the current statistics interval.
int current_acc_qp_; // Accumulated QP in the current statistics interval.
int current_encoding_time_ms_; // Overall encoding time in the current second
int64_t last_input_timestamp_ms_; // Timestamp of last received yuv frame.
int64_t last_output_timestamp_ms_; // Timestamp of last encoded frame.
// Holds the task while the polling loop is paused.
std::unique_ptr<rtc::QueuedTask> encode_task_;
struct InputFrameInfo {
InputFrameInfo(int64_t encode_start_time,
int32_t frame_timestamp,
int64_t frame_render_time_ms,
VideoRotation rotation)
: encode_start_time(encode_start_time),
frame_timestamp(frame_timestamp),
frame_render_time_ms(frame_render_time_ms),
rotation(rotation) {}
// Time when video frame is sent to encoder input.
const int64_t encode_start_time;
// Input frame information.
const int32_t frame_timestamp;
const int64_t frame_render_time_ms;
const VideoRotation rotation;
};
std::list<InputFrameInfo> input_frame_infos_;
int32_t output_timestamp_; // Last output frame timestamp from
// |input_frame_infos_|.
int64_t output_render_time_ms_; // Last output frame render time from
// |input_frame_infos_|.
VideoRotation output_rotation_; // Last output frame rotation from
// |input_frame_infos_|.
// Frame size in bytes fed to MediaCodec.
int yuv_size_;
// True only when between a callback_->OnEncodedImage() call return a positive
// value and the next Encode() call being ignored.
bool drop_next_input_frame_;
bool scale_;
H264::Profile profile_;
// Global references; must be deleted in Release().
std::vector<ScopedJavaGlobalRef<jobject>> input_buffers_;
H264BitstreamParser h264_bitstream_parser_;
// VP9 variables to populate codec specific structure.
GofInfoVP9 gof_; // Contains each frame's temporal information for
// non-flexible VP9 mode.
size_t gof_idx_;
const bool has_egl_context_;
EncoderInfo encoder_info_;
// Temporary fix for VP8.
// Sends a key frame if frames are largely spaced apart (possibly
// corresponding to a large image change).
int64_t last_frame_received_ms_;
int frames_received_since_last_key_;
VideoCodecMode codec_mode_;
bool sw_fallback_required_;
// All other member variables should be before WeakPtrFactory. Valid only from
// InitEncode to Release.
std::unique_ptr<rtc::WeakPtrFactory<MediaCodecVideoEncoder>> weak_factory_;
};
MediaCodecVideoEncoder::~MediaCodecVideoEncoder() {
#if RTC_DCHECK_IS_ON
rtc::CritScope lock(&inited_crit_);
RTC_DCHECK(!inited_);
#endif
}
MediaCodecVideoEncoder::MediaCodecVideoEncoder(JNIEnv* jni,
const SdpVideoFormat& format,
bool has_egl_context)
: format_(format),
callback_(NULL),
j_media_codec_video_encoder_(
jni,
Java_MediaCodecVideoEncoder_Constructor(jni)),
inited_(false),
use_surface_(false),
has_egl_context_(has_egl_context),
sw_fallback_required_(false) {
encoder_queue_checker_.Detach();
}
int32_t MediaCodecVideoEncoder::InitEncode(const VideoCodec* codec_settings,
int32_t /* number_of_cores */,
size_t /* max_payload_size */) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
if (codec_settings == NULL) {
ALOGE << "NULL VideoCodec instance";
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Factory should guard against other codecs being used with us.
const VideoCodecType codec_type = GetCodecType();
RTC_CHECK(codec_settings->codecType == codec_type)
<< "Unsupported codec " << codec_settings->codecType << " for "
<< codec_type;
if (sw_fallback_required_) {
return WEBRTC_VIDEO_CODEC_OK;
}
codec_mode_ = codec_settings->mode;
int init_width = codec_settings->width;
int init_height = codec_settings->height;
// Scaling is optionally enabled for VP8 and VP9.
// TODO(pbos): Extract automaticResizeOn out of VP8 settings.
scale_ = false;
if (codec_type == kVideoCodecVP8) {
scale_ = codec_settings->VP8().automaticResizeOn;
} else if (codec_type == kVideoCodecVP9) {
scale_ = codec_settings->VP9().automaticResizeOn;
} else {
scale_ = true;
}
ALOGD << "InitEncode request: " << init_width << " x " << init_height;
ALOGD << "Encoder automatic resize " << (scale_ ? "enabled" : "disabled");
if (codec_settings->numberOfSimulcastStreams > 1) {
ALOGD << "Number of simulcast layers requested: "
<< codec_settings->numberOfSimulcastStreams
<< ". Requesting software fallback.";
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
}
// Check allowed H.264 profile
profile_ = H264::Profile::kProfileBaseline;
if (codec_type == kVideoCodecH264) {
const absl::optional<H264::ProfileLevelId> profile_level_id =
H264::ParseSdpProfileLevelId(format_.parameters);
RTC_DCHECK(profile_level_id);
profile_ = profile_level_id->profile;
ALOGD << "H.264 profile: " << profile_;
}
encoder_info_.supports_native_handle = has_egl_context_;
encoder_info_.implementation_name = "MediaCodec";
encoder_info_.scaling_settings = GetScalingSettingsInternal();
return InitEncodeInternal(
init_width, init_height, codec_settings->startBitrate,
codec_settings->maxFramerate,
codec_settings->expect_encode_from_texture && has_egl_context_);
}
bool MediaCodecVideoEncoder::ResetCodec() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
ALOGE << "Reset";
if (Release() != WEBRTC_VIDEO_CODEC_OK) {
ALOGE << "Releasing codec failed during reset.";
return false;
}
if (InitEncodeInternal(width_, height_, 0, 0, false) !=
WEBRTC_VIDEO_CODEC_OK) {
ALOGE << "Initializing encoder failed during reset.";
return false;
}
return true;
}
MediaCodecVideoEncoder::EncodeTask::EncodeTask(
rtc::WeakPtr<MediaCodecVideoEncoder> encoder)
: encoder_(encoder) {}
bool MediaCodecVideoEncoder::EncodeTask::Run() {
if (!encoder_) {
// Encoder was destroyed.
return true;
}
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_->encoder_queue_checker_);
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedLocalRefFrame local_ref_frame(jni);
if (!encoder_->inited_) {
encoder_->encode_task_ = std::unique_ptr<rtc::QueuedTask>(this);
return false;
}
// It would be nice to recover from a failure here if one happened, but it's
// unclear how to signal such a failure to the app, so instead we stay silent
// about it and let the next app-called API method reveal the borkedness.
encoder_->DeliverPendingOutputs(jni);
if (!encoder_) {
// Encoder can be destroyed in DeliverPendingOutputs.
return true;
}
// Call log statistics here so it's called even if no frames are being
// delivered.
encoder_->LogStatistics(false);
// If there aren't more frames to deliver, we can start polling at lower rate.
if (encoder_->input_frame_infos_.empty()) {
rtc::TaskQueue::Current()->PostDelayedTask(
std::unique_ptr<rtc::QueuedTask>(this), kMediaCodecPollNoFramesMs);
} else {
rtc::TaskQueue::Current()->PostDelayedTask(
std::unique_ptr<rtc::QueuedTask>(this), kMediaCodecPollMs);
}
return false;
}
bool IsFormatSupported(const std::vector<SdpVideoFormat>& supported_formats,
const SdpVideoFormat& format) {
for (const SdpVideoFormat& supported_format : supported_formats) {
if (cricket::IsSameCodec(format.name, format.parameters,
supported_format.name,
supported_format.parameters)) {
return true;
}
}
return false;
}
bool MediaCodecVideoEncoder::ProcessHWError(
bool reset_if_fallback_unavailable) {
ALOGE << "ProcessHWError";
if (IsFormatSupported(InternalEncoderFactory().GetSupportedFormats(),
format_)) {
ALOGE << "Fallback to SW encoder.";
sw_fallback_required_ = true;
return false;
} else if (reset_if_fallback_unavailable) {
ALOGE << "Reset encoder.";
return ResetCodec();
}
return false;
}
int32_t MediaCodecVideoEncoder::ProcessHWErrorOnEncode() {
ProcessHWError(true /* reset_if_fallback_unavailable */);
return sw_fallback_required_ ? WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE
: WEBRTC_VIDEO_CODEC_ERROR;
}
VideoCodecType MediaCodecVideoEncoder::GetCodecType() const {
return PayloadStringToCodecType(format_.name);
}
int32_t MediaCodecVideoEncoder::InitEncodeInternal(int width,
int height,
int kbps,
int fps,
bool use_surface) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
if (sw_fallback_required_) {
return WEBRTC_VIDEO_CODEC_OK;
}
RTC_CHECK(!use_surface || has_egl_context_) << "EGL context not set.";
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedLocalRefFrame local_ref_frame(jni);
const VideoCodecType codec_type = GetCodecType();
ALOGD << "InitEncodeInternal Type: " << static_cast<int>(codec_type) << ", "
<< width << " x " << height << ". Bitrate: " << kbps
<< " kbps. Fps: " << fps << ". Profile: " << profile_ << ".";
if (kbps == 0) {
kbps = last_set_bitrate_kbps_;
}
if (fps == 0) {
fps = MAX_VIDEO_FPS;
}
width_ = width;
height_ = height;
last_set_bitrate_kbps_ = kbps;
last_set_fps_ = (fps < MAX_VIDEO_FPS) ? fps : MAX_VIDEO_FPS;
yuv_size_ = width_ * height_ * 3 / 2;
frames_received_ = 0;
frames_encoded_ = 0;
frames_dropped_media_encoder_ = 0;
consecutive_full_queue_frame_drops_ = 0;
current_timestamp_us_ = 0;
stat_start_time_ms_ = rtc::TimeMillis();
current_frames_ = 0;
current_bytes_ = 0;
current_acc_qp_ = 0;
current_encoding_time_ms_ = 0;
last_input_timestamp_ms_ = -1;
last_output_timestamp_ms_ = -1;
output_timestamp_ = 0;
output_render_time_ms_ = 0;
input_frame_infos_.clear();
drop_next_input_frame_ = false;
use_surface_ = use_surface;
gof_.SetGofInfoVP9(TemporalStructureMode::kTemporalStructureMode1);
gof_idx_ = 0;
last_frame_received_ms_ = -1;
frames_received_since_last_key_ = kMinKeyFrameInterval;
// We enforce no extra stride/padding in the format creation step.
ScopedJavaLocalRef<jobject> j_video_codec_enum =
Java_VideoCodecType_fromNativeIndex(jni, codec_type);
const bool encode_status = Java_MediaCodecVideoEncoder_initEncode(
jni, j_media_codec_video_encoder_, j_video_codec_enum, profile_, width,
height, kbps, fps, use_surface);
if (!encode_status) {
ALOGE << "Failed to configure encoder.";
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (CheckException(jni)) {
ALOGE << "Exception in init encode.";
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (!use_surface) {
ScopedJavaLocalRef<jobjectArray> input_buffers =
Java_MediaCodecVideoEncoder_getInputBuffers(
jni, j_media_codec_video_encoder_);
if (CheckException(jni)) {
ALOGE << "Exception in get input buffers.";
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (IsNull(jni, input_buffers)) {
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
switch (Java_MediaCodecVideoEncoder_getColorFormat(
jni, j_media_codec_video_encoder_)) {
case COLOR_FormatYUV420Planar:
encoder_fourcc_ = libyuv::FOURCC_YU12;
break;
case COLOR_FormatYUV420SemiPlanar:
case COLOR_QCOM_FormatYUV420SemiPlanar:
case COLOR_QCOM_FORMATYUV420PackedSemiPlanar32m:
encoder_fourcc_ = libyuv::FOURCC_NV12;
break;
default:
RTC_LOG(LS_ERROR) << "Wrong color format.";
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_CHECK(input_buffers_.empty())
<< "Unexpected double InitEncode without Release";
input_buffers_ = JavaToNativeVector<ScopedJavaGlobalRef<jobject>>(
jni, input_buffers, [](JNIEnv* env, const JavaRef<jobject>& o) {
return ScopedJavaGlobalRef<jobject>(env, o);
});
for (const ScopedJavaGlobalRef<jobject>& buffer : input_buffers_) {
int64_t yuv_buffer_capacity = jni->GetDirectBufferCapacity(buffer.obj());
if (CheckException(jni)) {
ALOGE << "Exception in get direct buffer capacity.";
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_CHECK(yuv_buffer_capacity >= yuv_size_) << "Insufficient capacity";
}
}
{
#if RTC_DCHECK_IS_ON
rtc::CritScope lock(&inited_crit_);
#endif
inited_ = true;
}
weak_factory_.reset(new rtc::WeakPtrFactory<MediaCodecVideoEncoder>(this));
encode_task_.reset(new EncodeTask(weak_factory_->GetWeakPtr()));
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t MediaCodecVideoEncoder::Encode(
const VideoFrame& frame,
const CodecSpecificInfo* /* codec_specific_info */,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
if (sw_fallback_required_)
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedLocalRefFrame local_ref_frame(jni);
const int64_t frame_input_time_ms = rtc::TimeMillis();
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
bool send_key_frame = false;
if (codec_mode_ == VideoCodecMode::kRealtimeVideo) {
++frames_received_since_last_key_;
int64_t now_ms = rtc::TimeMillis();
if (last_frame_received_ms_ != -1 &&
(now_ms - last_frame_received_ms_) > kFrameDiffThresholdMs) {
// Add limit to prevent triggering a key for every frame for very low
// framerates (e.g. if frame diff > kFrameDiffThresholdMs).
if (frames_received_since_last_key_ > kMinKeyFrameInterval) {
ALOGD << "Send key, frame diff: " << (now_ms - last_frame_received_ms_);
send_key_frame = true;
}
frames_received_since_last_key_ = 0;
}
last_frame_received_ms_ = now_ms;
}
frames_received_++;
if (!DeliverPendingOutputs(jni)) {
if (!ProcessHWError(true /* reset_if_fallback_unavailable */)) {
return sw_fallback_required_ ? WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE
: WEBRTC_VIDEO_CODEC_ERROR;
}
}
if (frames_encoded_ < kMaxEncodedLogFrames) {
ALOGD << "Encoder frame in # " << (frames_received_ - 1)
<< ". TS: " << static_cast<int>(current_timestamp_us_ / 1000)
<< ". Q: " << input_frame_infos_.size() << ". Fps: " << last_set_fps_
<< ". Kbps: " << last_set_bitrate_kbps_;
}
if (drop_next_input_frame_) {
ALOGW << "Encoder drop frame - failed callback.";
drop_next_input_frame_ = false;
current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_;
frames_dropped_media_encoder_++;
return WEBRTC_VIDEO_CODEC_OK;
}
RTC_CHECK(frame_types->size() == 1) << "Unexpected stream count";
// Check if we accumulated too many frames in encoder input buffers and drop
// frame if so.
if (input_frame_infos_.size() > MAX_ENCODER_Q_SIZE) {
ALOGD << "Already " << input_frame_infos_.size()
<< " frames in the queue, dropping"
<< ". TS: " << static_cast<int>(current_timestamp_us_ / 1000)
<< ". Fps: " << last_set_fps_
<< ". Consecutive drops: " << consecutive_full_queue_frame_drops_;
current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_;
consecutive_full_queue_frame_drops_++;
if (consecutive_full_queue_frame_drops_ >=
ENCODER_STALL_FRAMEDROP_THRESHOLD) {
ALOGE << "Encoder got stuck.";
return ProcessHWErrorOnEncode();
}
frames_dropped_media_encoder_++;
return WEBRTC_VIDEO_CODEC_OK;
}
consecutive_full_queue_frame_drops_ = 0;
rtc::scoped_refptr<VideoFrameBuffer> input_buffer(frame.video_frame_buffer());
VideoFrame input_frame(input_buffer, frame.timestamp(),
frame.render_time_ms(), frame.rotation());
if (!MaybeReconfigureEncoder(jni, input_frame)) {
ALOGE << "Failed to reconfigure encoder.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
const bool key_frame =
frame_types->front() != kVideoFrameDelta || send_key_frame;
bool encode_status = true;
int j_input_buffer_index = -1;
if (!use_surface_) {
j_input_buffer_index = Java_MediaCodecVideoEncoder_dequeueInputBuffer(
jni, j_media_codec_video_encoder_);
if (CheckException(jni)) {
ALOGE << "Exception in dequeu input buffer.";
return ProcessHWErrorOnEncode();
}
if (j_input_buffer_index == -1) {
// Video codec falls behind - no input buffer available.
ALOGW << "Encoder drop frame - no input buffers available";
if (frames_received_ > 1) {
current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_;
frames_dropped_media_encoder_++;
} else {
// Input buffers are not ready after codec initialization, HW is still
// allocating thme - this is expected and should not result in drop
// frame report.
frames_received_ = 0;
}
return WEBRTC_VIDEO_CODEC_OK; // TODO(fischman): see webrtc bug 2887.
} else if (j_input_buffer_index == -2) {
return ProcessHWErrorOnEncode();
}
}
if (input_frame.video_frame_buffer()->type() !=
VideoFrameBuffer::Type::kNative) {
encode_status =
EncodeByteBuffer(jni, key_frame, input_frame, j_input_buffer_index);
} else {
ScopedJavaLocalRef<jobject> j_frame = NativeToJavaVideoFrame(jni, frame);
encode_status =
EncodeJavaFrame(jni, key_frame, j_frame, j_input_buffer_index);
ReleaseJavaVideoFrame(jni, j_frame);
}
if (!encode_status) {
ALOGE << "Failed encode frame with timestamp: " << input_frame.timestamp();
return ProcessHWErrorOnEncode();
}
// Save input image timestamps for later output.
input_frame_infos_.emplace_back(frame_input_time_ms, input_frame.timestamp(),
input_frame.render_time_ms(),
input_frame.rotation());
last_input_timestamp_ms_ =
current_timestamp_us_ / rtc::kNumMicrosecsPerMillisec;
current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_;
// Start the polling loop if it is not started.
if (encode_task_) {
rtc::TaskQueue::Current()->PostDelayedTask(std::move(encode_task_),
kMediaCodecPollMs);
}
if (!DeliverPendingOutputs(jni)) {
return ProcessHWErrorOnEncode();
}
return WEBRTC_VIDEO_CODEC_OK;
}
bool MediaCodecVideoEncoder::MaybeReconfigureEncoder(JNIEnv* jni,
const VideoFrame& frame) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
bool is_texture = IsTextureFrame(jni, frame);
const bool reconfigure_due_to_format = is_texture != use_surface_;
const bool reconfigure_due_to_size =
frame.width() != width_ || frame.height() != height_;
if (reconfigure_due_to_format) {
ALOGD << "Reconfigure encoder due to format change. "
<< (use_surface_ ? "Reconfiguring to encode from byte buffer."
: "Reconfiguring to encode from texture.");
LogStatistics(true);
}
if (reconfigure_due_to_size) {
ALOGW << "Reconfigure encoder due to frame resolution change from "
<< width_ << " x " << height_ << " to " << frame.width() << " x "
<< frame.height();
LogStatistics(true);
width_ = frame.width();
height_ = frame.height();
}
if (!reconfigure_due_to_format && !reconfigure_due_to_size)
return true;
Release();
return InitEncodeInternal(width_, height_, 0, 0, is_texture) ==
WEBRTC_VIDEO_CODEC_OK;
}
bool MediaCodecVideoEncoder::IsTextureFrame(JNIEnv* jni,
const VideoFrame& frame) {
if (frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative) {
return false;
}
return Java_MediaCodecVideoEncoder_isTextureBuffer(
jni, static_cast<AndroidVideoBuffer*>(frame.video_frame_buffer().get())
->video_frame_buffer());
}
bool MediaCodecVideoEncoder::EncodeByteBuffer(JNIEnv* jni,
bool key_frame,
const VideoFrame& frame,
int input_buffer_index) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
RTC_CHECK(!use_surface_);
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
frame.video_frame_buffer()->ToI420();
if (!FillInputBuffer(jni, input_buffer_index, i420_buffer->DataY(),
i420_buffer->StrideY(), i420_buffer->DataU(),
i420_buffer->StrideU(), i420_buffer->DataV(),
i420_buffer->StrideV())) {
return false;
}
bool encode_status = Java_MediaCodecVideoEncoder_encodeBuffer(
jni, j_media_codec_video_encoder_, key_frame, input_buffer_index,
yuv_size_, current_timestamp_us_);
if (CheckException(jni)) {
ALOGE << "Exception in encode buffer.";
ProcessHWError(true /* reset_if_fallback_unavailable */);
return false;
}
return encode_status;
}
bool MediaCodecVideoEncoder::FillInputBuffer(JNIEnv* jni,
int input_buffer_index,
uint8_t const* buffer_y,
int stride_y,
uint8_t const* buffer_u,
int stride_u,
uint8_t const* buffer_v,
int stride_v) {
uint8_t* yuv_buffer = reinterpret_cast<uint8_t*>(
jni->GetDirectBufferAddress(input_buffers_[input_buffer_index].obj()));
if (CheckException(jni)) {
ALOGE << "Exception in get direct buffer address.";
ProcessHWError(true /* reset_if_fallback_unavailable */);
return false;
}
RTC_CHECK(yuv_buffer) << "Indirect buffer??";
RTC_CHECK(!libyuv::ConvertFromI420(buffer_y, stride_y, buffer_u, stride_u,
buffer_v, stride_v, yuv_buffer, width_,
width_, height_, encoder_fourcc_))
<< "ConvertFromI420 failed";
return true;
}
bool MediaCodecVideoEncoder::EncodeJavaFrame(JNIEnv* jni,
bool key_frame,
const JavaRef<jobject>& frame,
int input_buffer_index) {
bool encode_status = Java_MediaCodecVideoEncoder_encodeFrame(
jni, j_media_codec_video_encoder_, jlongFromPointer(this), key_frame,
frame, input_buffer_index, current_timestamp_us_);
if (CheckException(jni)) {
ALOGE << "Exception in encode frame.";
ProcessHWError(true /* reset_if_fallback_unavailable */);
return false;
}
return encode_status;
}
int32_t MediaCodecVideoEncoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedLocalRefFrame local_ref_frame(jni);
callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t MediaCodecVideoEncoder::Release() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
if (!inited_) {
return WEBRTC_VIDEO_CODEC_OK;
}
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ALOGD << "EncoderRelease: Frames received: " << frames_received_
<< ". Encoded: " << frames_encoded_
<< ". Dropped: " << frames_dropped_media_encoder_;
encode_task_.reset(nullptr);
weak_factory_.reset(nullptr);
ScopedLocalRefFrame local_ref_frame(jni);
input_buffers_.clear();
Java_MediaCodecVideoEncoder_release(jni, j_media_codec_video_encoder_);
if (CheckException(jni)) {
ALOGE << "Exception in release.";
ProcessHWError(false /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
{
#if RTC_DCHECK_IS_ON
rtc::CritScope lock(&inited_crit_);
#endif
inited_ = false;
}
use_surface_ = false;
ALOGD << "EncoderRelease done.";
// It's legal to move the encoder to another queue now.
encoder_queue_checker_.Detach();
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t MediaCodecVideoEncoder::SetRateAllocation(
const VideoBitrateAllocation& rate_allocation,
uint32_t frame_rate) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
const uint32_t new_bit_rate = rate_allocation.get_sum_kbps();
if (sw_fallback_required_)
return WEBRTC_VIDEO_CODEC_OK;
frame_rate =
(frame_rate < MAX_ALLOWED_VIDEO_FPS) ? frame_rate : MAX_ALLOWED_VIDEO_FPS;
if (last_set_bitrate_kbps_ == new_bit_rate && last_set_fps_ == frame_rate) {
return WEBRTC_VIDEO_CODEC_OK;
}
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedLocalRefFrame local_ref_frame(jni);
if (new_bit_rate > 0) {
last_set_bitrate_kbps_ = new_bit_rate;
}
if (frame_rate > 0) {
last_set_fps_ = frame_rate;
}
bool ret = Java_MediaCodecVideoEncoder_setRates(
jni, j_media_codec_video_encoder_,
rtc::dchecked_cast<int>(last_set_bitrate_kbps_),
rtc::dchecked_cast<int>(last_set_fps_));
if (CheckException(jni) || !ret) {
ProcessHWError(true /* reset_if_fallback_unavailable */);
return sw_fallback_required_ ? WEBRTC_VIDEO_CODEC_OK
: WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
VideoEncoder::EncoderInfo MediaCodecVideoEncoder::GetEncoderInfo() const {
return encoder_info_;
}
bool MediaCodecVideoEncoder::DeliverPendingOutputs(JNIEnv* jni) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&encoder_queue_checker_);
while (true) {
ScopedJavaLocalRef<jobject> j_output_buffer_info =
Java_MediaCodecVideoEncoder_dequeueOutputBuffer(
jni, j_media_codec_video_encoder_);
if (CheckException(jni)) {
ALOGE << "Exception in set dequeue output buffer.";
ProcessHWError(true /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (IsNull(jni, j_output_buffer_info)) {
break;
}
int output_buffer_index =
Java_OutputBufferInfo_getIndex(jni, j_output_buffer_info);
if (output_buffer_index == -1) {
ProcessHWError(true /* reset_if_fallback_unavailable */);
return false;
}
// Get key and config frame flags.
ScopedJavaLocalRef<jobject> j_output_buffer =
Java_OutputBufferInfo_getBuffer(jni, j_output_buffer_info);
bool key_frame =
Java_OutputBufferInfo_isKeyFrame(jni, j_output_buffer_info);
// Get frame timestamps from a queue - for non config frames only.
int64_t encoding_start_time_ms = 0;
int64_t frame_encoding_time_ms = 0;
last_output_timestamp_ms_ =
Java_OutputBufferInfo_getPresentationTimestampUs(jni,
j_output_buffer_info) /
rtc::kNumMicrosecsPerMillisec;
if (!input_frame_infos_.empty()) {
const InputFrameInfo& frame_info = input_frame_infos_.front();
output_timestamp_ = frame_info.frame_timestamp;
output_render_time_ms_ = frame_info.frame_render_time_ms;
output_rotation_ = frame_info.rotation;
encoding_start_time_ms = frame_info.encode_start_time;
input_frame_infos_.pop_front();
}
// Extract payload.
size_t payload_size = jni->GetDirectBufferCapacity(j_output_buffer.obj());
uint8_t* payload = reinterpret_cast<uint8_t*>(
jni->GetDirectBufferAddress(j_output_buffer.obj()));
if (CheckException(jni)) {
ALOGE << "Exception in get direct buffer address.";
ProcessHWError(true /* reset_if_fallback_unavailable */);
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Callback - return encoded frame.
const VideoCodecType codec_type = GetCodecType();
EncodedImageCallback::Result callback_result(
EncodedImageCallback::Result::OK);
if (callback_) {
std::unique_ptr<EncodedImage> image(
new EncodedImage(payload, payload_size, payload_size));
image->_encodedWidth = width_;
image->_encodedHeight = height_;
image->SetTimestamp(output_timestamp_);
image->capture_time_ms_ = output_render_time_ms_;
image->rotation_ = output_rotation_;
image->content_type_ = (codec_mode_ == VideoCodecMode::kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
image->timing_.flags = VideoSendTiming::kInvalid;
image->_frameType = (key_frame ? kVideoFrameKey : kVideoFrameDelta);
image->_completeFrame = true;
CodecSpecificInfo info;
memset(&info, 0, sizeof(info));
info.codecType = codec_type;
if (codec_type == kVideoCodecVP8) {
info.codecSpecific.VP8.nonReference = false;
info.codecSpecific.VP8.temporalIdx = kNoTemporalIdx;
info.codecSpecific.VP8.layerSync = false;
info.codecSpecific.VP8.keyIdx = kNoKeyIdx;
} else if (codec_type == kVideoCodecVP9) {
if (key_frame) {
gof_idx_ = 0;
}
info.codecSpecific.VP9.inter_pic_predicted = key_frame ? false : true;
info.codecSpecific.VP9.flexible_mode = false;
info.codecSpecific.VP9.ss_data_available = key_frame ? true : false;
info.codecSpecific.VP9.temporal_idx = kNoTemporalIdx;
info.codecSpecific.VP9.temporal_up_switch = true;
info.codecSpecific.VP9.inter_layer_predicted = false;
info.codecSpecific.VP9.gof_idx =
static_cast<uint8_t>(gof_idx_++ % gof_.num_frames_in_gof);
info.codecSpecific.VP9.num_spatial_layers = 1;
info.codecSpecific.VP9.first_frame_in_picture = true;
info.codecSpecific.VP9.end_of_picture = true;
info.codecSpecific.VP9.spatial_layer_resolution_present = false;
if (info.codecSpecific.VP9.ss_data_available) {
info.codecSpecific.VP9.spatial_layer_resolution_present = true;
info.codecSpecific.VP9.width[0] = width_;
info.codecSpecific.VP9.height[0] = height_;
info.codecSpecific.VP9.gof.CopyGofInfoVP9(gof_);
}
}
// Generate a header describing a single fragment.
RTPFragmentationHeader header;
memset(&header, 0, sizeof(header));
if (codec_type == kVideoCodecVP8 || codec_type == kVideoCodecVP9) {
header.VerifyAndAllocateFragmentationHeader(1);
header.fragmentationOffset[0] = 0;
header.fragmentationLength[0] = image->_length;
header.fragmentationPlType[0] = 0;
header.fragmentationTimeDiff[0] = 0;
if (codec_type == kVideoCodecVP8) {
int qp;
if (vp8::GetQp(payload, payload_size, &qp)) {
current_acc_qp_ += qp;
image->qp_ = qp;
}
} else if (codec_type == kVideoCodecVP9) {
int qp;
if (vp9::GetQp(payload, payload_size, &qp)) {
current_acc_qp_ += qp;
image->qp_ = qp;
}
}
} else if (codec_type == kVideoCodecH264) {
h264_bitstream_parser_.ParseBitstream(payload, payload_size);
int qp;
if (h264_bitstream_parser_.GetLastSliceQp(&qp)) {
current_acc_qp_ += qp;
image->qp_ = qp;
}
// For H.264 search for start codes.
const std::vector<H264::NaluIndex> nalu_idxs =
H264::FindNaluIndices(payload, payload_size);
if (nalu_idxs.empty()) {
ALOGE << "Start code is not found!";
ALOGE << "Data:" << image->_buffer[0] << " " << image->_buffer[1]
<< " " << image->_buffer[2] << " " << image->_buffer[3] << " "
<< image->_buffer[4] << " " << image->_buffer[5];
ProcessHWError(true /* reset_if_fallback_unavailable */);
return false;
}
header.VerifyAndAllocateFragmentationHeader(nalu_idxs.size());
for (size_t i = 0; i < nalu_idxs.size(); i++) {
header.fragmentationOffset[i] = nalu_idxs[i].payload_start_offset;
header.fragmentationLength[i] = nalu_idxs[i].payload_size;
header.fragmentationPlType[i] = 0;
header.fragmentationTimeDiff[i] = 0;
}
}
callback_result = callback_->OnEncodedImage(*image, &info, &header);
}
// Return output buffer back to the encoder.
bool success = Java_MediaCodecVideoEncoder_releaseOutputBuffer(
jni, j_media_codec_video_encoder_, output_buffer_index);
if (CheckException(jni) || !success) {
ProcessHWError(true /* reset_if_fallback_unavailable */);
return false;
}
// Print per frame statistics.
if (encoding_start_time_ms > 0) {
frame_encoding_time_ms = rtc::TimeMillis() - encoding_start_time_ms;
}
if (frames_encoded_ < kMaxEncodedLogFrames) {
int current_latency = static_cast<int>(last_input_timestamp_ms_ -
last_output_timestamp_ms_);
ALOGD << "Encoder frame out # " << frames_encoded_
<< ". Key: " << key_frame << ". Size: " << payload_size
<< ". TS: " << static_cast<int>(last_output_timestamp_ms_)
<< ". Latency: " << current_latency
<< ". EncTime: " << frame_encoding_time_ms;
}
// Calculate and print encoding statistics - every 3 seconds.
frames_encoded_++;
current_frames_++;
current_bytes_ += payload_size;
current_encoding_time_ms_ += frame_encoding_time_ms;
LogStatistics(false);
// Errors in callback_result are currently ignored.
if (callback_result.drop_next_frame)
drop_next_input_frame_ = true;
}
return true;
}
void MediaCodecVideoEncoder::LogStatistics(bool force_log) {
int statistic_time_ms = rtc::TimeMillis() - stat_start_time_ms_;
if ((statistic_time_ms >= kMediaCodecStatisticsIntervalMs || force_log) &&
statistic_time_ms > 0) {
// Prevent division by zero.
int current_frames_divider = current_frames_ != 0 ? current_frames_ : 1;
int current_bitrate = current_bytes_ * 8 / statistic_time_ms;
int current_fps =
(current_frames_ * 1000 + statistic_time_ms / 2) / statistic_time_ms;
ALOGD << "Encoded frames: " << frames_encoded_
<< ". Bitrate: " << current_bitrate
<< ", target: " << last_set_bitrate_kbps_ << " kbps"
<< ", fps: " << current_fps << ", encTime: "
<< (current_encoding_time_ms_ / current_frames_divider)
<< ". QP: " << (current_acc_qp_ / current_frames_divider)
<< " for last " << statistic_time_ms << " ms.";
stat_start_time_ms_ = rtc::TimeMillis();
current_frames_ = 0;
current_bytes_ = 0;
current_acc_qp_ = 0;
current_encoding_time_ms_ = 0;
}
}
VideoEncoder::ScalingSettings
MediaCodecVideoEncoder::GetScalingSettingsInternal() const {
if (!scale_)
return VideoEncoder::ScalingSettings::kOff;
const VideoCodecType codec_type = GetCodecType();
if (field_trial::IsEnabled(kCustomQPThresholdsFieldTrial)) {
std::string experiment_string =
field_trial::FindFullName(kCustomQPThresholdsFieldTrial);
ALOGD << "QP custom thresholds: " << experiment_string << " for codec "
<< codec_type;
int low_vp8_qp_threshold;
int high_vp8_qp_threshold;
int low_h264_qp_threshold;
int high_h264_qp_threshold;
int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%u,%u,%u,%u",
&low_vp8_qp_threshold, &high_vp8_qp_threshold,
&low_h264_qp_threshold, &high_h264_qp_threshold);
if (parsed_values == 4) {
RTC_CHECK_GT(high_vp8_qp_threshold, low_vp8_qp_threshold);
RTC_CHECK_GT(low_vp8_qp_threshold, 0);
RTC_CHECK_GT(high_h264_qp_threshold, low_h264_qp_threshold);
RTC_CHECK_GT(low_h264_qp_threshold, 0);
if (codec_type == kVideoCodecVP8) {
return VideoEncoder::ScalingSettings(low_vp8_qp_threshold,
high_vp8_qp_threshold);
} else if (codec_type == kVideoCodecH264) {
return VideoEncoder::ScalingSettings(low_h264_qp_threshold,
high_h264_qp_threshold);
}
}
}
if (codec_type == kVideoCodecVP8) {
// Same as in vp8_impl.cc.
static const int kLowVp8QpThreshold = 29;
static const int kHighVp8QpThreshold = 95;
return VideoEncoder::ScalingSettings(kLowVp8QpThreshold,
kHighVp8QpThreshold);
} else if (codec_type == kVideoCodecVP9) {
// QP is obtained from VP9-bitstream, so the QP corresponds to the bitstream
// range of [0, 255] and not the user-level range of [0,63].
static const int kLowVp9QpThreshold = 96;
static const int kHighVp9QpThreshold = 185;
return VideoEncoder::ScalingSettings(kLowVp9QpThreshold,
kHighVp9QpThreshold);
} else if (codec_type == kVideoCodecH264) {
// Same as in h264_encoder_impl.cc.
static const int kLowH264QpThreshold = 24;
static const int kHighH264QpThreshold = 37;
return VideoEncoder::ScalingSettings(kLowH264QpThreshold,
kHighH264QpThreshold);
}
return VideoEncoder::ScalingSettings::kOff;
}
static void JNI_MediaCodecVideoEncoder_FillInputBuffer(
JNIEnv* jni,
const JavaParamRef<jclass>&,
jlong native_encoder,
jint input_buffer,
const JavaParamRef<jobject>& j_buffer_y,
jint stride_y,
const JavaParamRef<jobject>& j_buffer_u,
jint stride_u,
const JavaParamRef<jobject>& j_buffer_v,
jint stride_v) {
uint8_t* buffer_y =
static_cast<uint8_t*>(jni->GetDirectBufferAddress(j_buffer_y.obj()));
uint8_t* buffer_u =
static_cast<uint8_t*>(jni->GetDirectBufferAddress(j_buffer_u.obj()));
uint8_t* buffer_v =
static_cast<uint8_t*>(jni->GetDirectBufferAddress(j_buffer_v.obj()));
RTC_DCHECK(buffer_y) << "GetDirectBufferAddress returned null. Ensure that "
"getDataY returns a direct ByteBuffer.";
RTC_DCHECK(buffer_u) << "GetDirectBufferAddress returned null. Ensure that "
"getDataU returns a direct ByteBuffer.";
RTC_DCHECK(buffer_v) << "GetDirectBufferAddress returned null. Ensure that "
"getDataV returns a direct ByteBuffer.";
reinterpret_cast<MediaCodecVideoEncoder*>(native_encoder)
->FillInputBuffer(jni, input_buffer, buffer_y, stride_y, buffer_u,
stride_u, buffer_v, stride_v);
}
static jlong JNI_MediaCodecVideoEncoder_CreateEncoder(
JNIEnv* env,
const JavaParamRef<jclass>&,
const JavaParamRef<jobject>& format,
jboolean has_egl_context) {
ScopedLocalRefFrame local_ref_frame(env);
return jlongFromPointer(new MediaCodecVideoEncoder(
env, VideoCodecInfoToSdpVideoFormat(env, format), has_egl_context));
}
} // namespace jni
} // namespace webrtc