Files
platform-external-webrtc/webrtc/modules/audio_processing/audio_processing_impl.cc
peah 66085beef8 Bugfix that fixes the error where the audio processing module is called
using the wrong sample rate for the render signal.

The CL is basically a partial revert of the related changes done on
output_mixer.cc in the CL https://codereview.webrtc.org/1234463003.

The CL also reverts the removal of the input_sample_rate_hz() method
that was removed as part of the CL
https://codereview.webrtc.org/1379123002 (as it was at that point
no longer used).

It should be noted that this CL turns off the effect of the
IntelligibilityEnhancer when the AudioFrame AudioProcessing APIs are
used. While it may be possible to solve that by adding upsampling after
the API call, that  approach was discarded due to that:
-That would add extra processing in the echo path, leading to possible
AEC performance reduction.
-That would add extra complexity for the mobile case.
-That would only patch the intelligibility enhancer operation as the
proper way to do such an operation is within APM.
-The intelligibility enhancer is not active by default anywhere.

BUG=webrtc:5237

Review URL: https://codereview.webrtc.org/1525173002

Cr-Commit-Position: refs/heads/master@{#11045}
2015-12-16 10:02:26 +00:00

1500 lines
54 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/audio_processing_impl.h"
#include <assert.h>
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/base/platform_file.h"
#include "webrtc/common_audio/audio_converter.h"
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
extern "C" {
#include "webrtc/modules/audio_processing/aec/aec_core.h"
}
#include "webrtc/modules/audio_processing/agc/agc_manager_direct.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h"
#include "webrtc/modules/audio_processing/common.h"
#include "webrtc/modules/audio_processing/echo_cancellation_impl.h"
#include "webrtc/modules/audio_processing/echo_control_mobile_impl.h"
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include "webrtc/modules/audio_processing/high_pass_filter_impl.h"
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
#include "webrtc/modules/audio_processing/level_estimator_impl.h"
#include "webrtc/modules/audio_processing/noise_suppression_impl.h"
#include "webrtc/modules/audio_processing/processing_component.h"
#include "webrtc/modules/audio_processing/transient/transient_suppressor.h"
#include "webrtc/modules/audio_processing/voice_detection_impl.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/system_wrappers/include/file_wrapper.h"
#include "webrtc/system_wrappers/include/logging.h"
#include "webrtc/system_wrappers/include/metrics.h"
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Files generated at build-time by the protobuf compiler.
#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
#include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h"
#else
#include "webrtc/audio_processing/debug.pb.h"
#endif
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
#define RETURN_ON_ERR(expr) \
do { \
int err = (expr); \
if (err != kNoError) { \
return err; \
} \
} while (0)
namespace webrtc {
namespace {
static bool LayoutHasKeyboard(AudioProcessing::ChannelLayout layout) {
switch (layout) {
case AudioProcessing::kMono:
case AudioProcessing::kStereo:
return false;
case AudioProcessing::kMonoAndKeyboard:
case AudioProcessing::kStereoAndKeyboard:
return true;
}
assert(false);
return false;
}
} // namespace
// Throughout webrtc, it's assumed that success is represented by zero.
static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
// This class has two main functionalities:
//
// 1) It is returned instead of the real GainControl after the new AGC has been
// enabled in order to prevent an outside user from overriding compression
// settings. It doesn't do anything in its implementation, except for
// delegating the const methods and Enable calls to the real GainControl, so
// AGC can still be disabled.
//
// 2) It is injected into AgcManagerDirect and implements volume callbacks for
// getting and setting the volume level. It just caches this value to be used
// in VoiceEngine later.
class GainControlForNewAgc : public GainControl, public VolumeCallbacks {
public:
explicit GainControlForNewAgc(GainControlImpl* gain_control)
: real_gain_control_(gain_control), volume_(0) {}
// GainControl implementation.
int Enable(bool enable) override {
return real_gain_control_->Enable(enable);
}
bool is_enabled() const override { return real_gain_control_->is_enabled(); }
int set_stream_analog_level(int level) override {
volume_ = level;
return AudioProcessing::kNoError;
}
int stream_analog_level() override { return volume_; }
int set_mode(Mode mode) override { return AudioProcessing::kNoError; }
Mode mode() const override { return GainControl::kAdaptiveAnalog; }
int set_target_level_dbfs(int level) override {
return AudioProcessing::kNoError;
}
int target_level_dbfs() const override {
return real_gain_control_->target_level_dbfs();
}
int set_compression_gain_db(int gain) override {
return AudioProcessing::kNoError;
}
int compression_gain_db() const override {
return real_gain_control_->compression_gain_db();
}
int enable_limiter(bool enable) override { return AudioProcessing::kNoError; }
bool is_limiter_enabled() const override {
return real_gain_control_->is_limiter_enabled();
}
int set_analog_level_limits(int minimum, int maximum) override {
return AudioProcessing::kNoError;
}
int analog_level_minimum() const override {
return real_gain_control_->analog_level_minimum();
}
int analog_level_maximum() const override {
return real_gain_control_->analog_level_maximum();
}
bool stream_is_saturated() const override {
return real_gain_control_->stream_is_saturated();
}
// VolumeCallbacks implementation.
void SetMicVolume(int volume) override { volume_ = volume; }
int GetMicVolume() override { return volume_; }
private:
GainControl* real_gain_control_;
int volume_;
};
struct AudioProcessingImpl::ApmPublicSubmodules {
ApmPublicSubmodules()
: echo_cancellation(nullptr),
echo_control_mobile(nullptr),
gain_control(nullptr),
voice_detection(nullptr) {}
// Accessed externally of APM without any lock acquired.
EchoCancellationImpl* echo_cancellation;
EchoControlMobileImpl* echo_control_mobile;
GainControlImpl* gain_control;
rtc::scoped_ptr<HighPassFilterImpl> high_pass_filter;
rtc::scoped_ptr<LevelEstimatorImpl> level_estimator;
rtc::scoped_ptr<NoiseSuppressionImpl> noise_suppression;
VoiceDetectionImpl* voice_detection;
rtc::scoped_ptr<GainControlForNewAgc> gain_control_for_new_agc;
// Accessed internally from both render and capture.
rtc::scoped_ptr<TransientSuppressor> transient_suppressor;
rtc::scoped_ptr<IntelligibilityEnhancer> intelligibility_enhancer;
};
struct AudioProcessingImpl::ApmPrivateSubmodules {
explicit ApmPrivateSubmodules(Beamformer<float>* beamformer)
: beamformer(beamformer) {}
// Accessed internally from capture or during initialization
std::list<ProcessingComponent*> component_list;
rtc::scoped_ptr<Beamformer<float>> beamformer;
rtc::scoped_ptr<AgcManagerDirect> agc_manager;
};
const int AudioProcessing::kNativeSampleRatesHz[] = {
AudioProcessing::kSampleRate8kHz,
AudioProcessing::kSampleRate16kHz,
AudioProcessing::kSampleRate32kHz,
AudioProcessing::kSampleRate48kHz};
const size_t AudioProcessing::kNumNativeSampleRates =
arraysize(AudioProcessing::kNativeSampleRatesHz);
const int AudioProcessing::kMaxNativeSampleRateHz = AudioProcessing::
kNativeSampleRatesHz[AudioProcessing::kNumNativeSampleRates - 1];
const int AudioProcessing::kMaxAECMSampleRateHz = kSampleRate16kHz;
AudioProcessing* AudioProcessing::Create() {
Config config;
return Create(config, nullptr);
}
AudioProcessing* AudioProcessing::Create(const Config& config) {
return Create(config, nullptr);
}
AudioProcessing* AudioProcessing::Create(const Config& config,
Beamformer<float>* beamformer) {
AudioProcessingImpl* apm = new AudioProcessingImpl(config, beamformer);
if (apm->Initialize() != kNoError) {
delete apm;
apm = nullptr;
}
return apm;
}
AudioProcessingImpl::AudioProcessingImpl(const Config& config)
: AudioProcessingImpl(config, nullptr) {}
AudioProcessingImpl::AudioProcessingImpl(const Config& config,
Beamformer<float>* beamformer)
: public_submodules_(new ApmPublicSubmodules()),
private_submodules_(new ApmPrivateSubmodules(beamformer)),
constants_(config.Get<ExperimentalAgc>().startup_min_volume,
config.Get<Beamforming>().array_geometry,
config.Get<Beamforming>().target_direction,
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
false,
#else
config.Get<ExperimentalAgc>().enabled,
#endif
config.Get<Intelligibility>().enabled,
config.Get<Beamforming>().enabled),
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
capture_(false)
#else
capture_(config.Get<ExperimentalNs>().enabled)
#endif
{
{
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
public_submodules_->echo_cancellation =
new EchoCancellationImpl(this, &crit_render_, &crit_capture_);
public_submodules_->echo_control_mobile =
new EchoControlMobileImpl(this, &crit_render_, &crit_capture_);
public_submodules_->gain_control =
new GainControlImpl(this, &crit_capture_, &crit_capture_);
public_submodules_->high_pass_filter.reset(
new HighPassFilterImpl(&crit_capture_));
public_submodules_->level_estimator.reset(
new LevelEstimatorImpl(&crit_capture_));
public_submodules_->noise_suppression.reset(
new NoiseSuppressionImpl(&crit_capture_));
public_submodules_->voice_detection =
new VoiceDetectionImpl(this, &crit_capture_);
public_submodules_->gain_control_for_new_agc.reset(
new GainControlForNewAgc(public_submodules_->gain_control));
private_submodules_->component_list.push_back(
public_submodules_->echo_cancellation);
private_submodules_->component_list.push_back(
public_submodules_->echo_control_mobile);
private_submodules_->component_list.push_back(
public_submodules_->gain_control);
private_submodules_->component_list.push_back(
public_submodules_->voice_detection);
}
SetExtraOptions(config);
}
AudioProcessingImpl::~AudioProcessingImpl() {
// Depends on gain_control_ and
// public_submodules_->gain_control_for_new_agc.
private_submodules_->agc_manager.reset();
// Depends on gain_control_.
public_submodules_->gain_control_for_new_agc.reset();
while (!private_submodules_->component_list.empty()) {
ProcessingComponent* component =
private_submodules_->component_list.front();
component->Destroy();
delete component;
private_submodules_->component_list.pop_front();
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
debug_dump_.debug_file->CloseFile();
}
#endif
}
int AudioProcessingImpl::Initialize() {
// Run in a single-threaded manner during initialization.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
return InitializeLocked();
}
int AudioProcessingImpl::Initialize(int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
ChannelLayout input_layout,
ChannelLayout output_layout,
ChannelLayout reverse_layout) {
const ProcessingConfig processing_config = {
{{input_sample_rate_hz,
ChannelsFromLayout(input_layout),
LayoutHasKeyboard(input_layout)},
{output_sample_rate_hz,
ChannelsFromLayout(output_layout),
LayoutHasKeyboard(output_layout)},
{reverse_sample_rate_hz,
ChannelsFromLayout(reverse_layout),
LayoutHasKeyboard(reverse_layout)},
{reverse_sample_rate_hz,
ChannelsFromLayout(reverse_layout),
LayoutHasKeyboard(reverse_layout)}}};
return Initialize(processing_config);
}
int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) {
// Run in a single-threaded manner during initialization.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
return InitializeLocked(processing_config);
}
int AudioProcessingImpl::MaybeInitializeRender(
const ProcessingConfig& processing_config) {
return MaybeInitialize(processing_config);
}
int AudioProcessingImpl::MaybeInitializeCapture(
const ProcessingConfig& processing_config) {
return MaybeInitialize(processing_config);
}
// Calls InitializeLocked() if any of the audio parameters have changed from
// their current values (needs to be called while holding the crit_render_lock).
int AudioProcessingImpl::MaybeInitialize(
const ProcessingConfig& processing_config) {
// Called from both threads. Thread check is therefore not possible.
if (processing_config == formats_.api_format) {
return kNoError;
}
rtc::CritScope cs_capture(&crit_capture_);
return InitializeLocked(processing_config);
}
int AudioProcessingImpl::InitializeLocked() {
const int fwd_audio_buffer_channels =
constants_.beamformer_enabled
? formats_.api_format.input_stream().num_channels()
: formats_.api_format.output_stream().num_channels();
const int rev_audio_buffer_out_num_frames =
formats_.api_format.reverse_output_stream().num_frames() == 0
? formats_.rev_proc_format.num_frames()
: formats_.api_format.reverse_output_stream().num_frames();
if (formats_.api_format.reverse_input_stream().num_channels() > 0) {
render_.render_audio.reset(new AudioBuffer(
formats_.api_format.reverse_input_stream().num_frames(),
formats_.api_format.reverse_input_stream().num_channels(),
formats_.rev_proc_format.num_frames(),
formats_.rev_proc_format.num_channels(),
rev_audio_buffer_out_num_frames));
if (rev_conversion_needed()) {
render_.render_converter = AudioConverter::Create(
formats_.api_format.reverse_input_stream().num_channels(),
formats_.api_format.reverse_input_stream().num_frames(),
formats_.api_format.reverse_output_stream().num_channels(),
formats_.api_format.reverse_output_stream().num_frames());
} else {
render_.render_converter.reset(nullptr);
}
} else {
render_.render_audio.reset(nullptr);
render_.render_converter.reset(nullptr);
}
capture_.capture_audio.reset(
new AudioBuffer(formats_.api_format.input_stream().num_frames(),
formats_.api_format.input_stream().num_channels(),
capture_nonlocked_.fwd_proc_format.num_frames(),
fwd_audio_buffer_channels,
formats_.api_format.output_stream().num_frames()));
// Initialize all components.
for (auto item : private_submodules_->component_list) {
int err = item->Initialize();
if (err != kNoError) {
return err;
}
}
InitializeExperimentalAgc();
InitializeTransient();
InitializeBeamformer();
InitializeIntelligibility();
InitializeHighPassFilter();
InitializeNoiseSuppression();
InitializeLevelEstimator();
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
}
#endif
return kNoError;
}
int AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) {
for (const auto& stream : config.streams) {
if (stream.num_channels() < 0) {
return kBadNumberChannelsError;
}
if (stream.num_channels() > 0 && stream.sample_rate_hz() <= 0) {
return kBadSampleRateError;
}
}
const int num_in_channels = config.input_stream().num_channels();
const int num_out_channels = config.output_stream().num_channels();
// Need at least one input channel.
// Need either one output channel or as many outputs as there are inputs.
if (num_in_channels == 0 ||
!(num_out_channels == 1 || num_out_channels == num_in_channels)) {
return kBadNumberChannelsError;
}
if (constants_.beamformer_enabled && (static_cast<size_t>(num_in_channels) !=
constants_.array_geometry.size() ||
num_out_channels > 1)) {
return kBadNumberChannelsError;
}
formats_.api_format = config;
// We process at the closest native rate >= min(input rate, output rate)...
const int min_proc_rate =
std::min(formats_.api_format.input_stream().sample_rate_hz(),
formats_.api_format.output_stream().sample_rate_hz());
int fwd_proc_rate;
for (size_t i = 0; i < kNumNativeSampleRates; ++i) {
fwd_proc_rate = kNativeSampleRatesHz[i];
if (fwd_proc_rate >= min_proc_rate) {
break;
}
}
// ...with one exception.
if (public_submodules_->echo_control_mobile->is_enabled() &&
min_proc_rate > kMaxAECMSampleRateHz) {
fwd_proc_rate = kMaxAECMSampleRateHz;
}
capture_nonlocked_.fwd_proc_format = StreamConfig(fwd_proc_rate);
// We normally process the reverse stream at 16 kHz. Unless...
int rev_proc_rate = kSampleRate16kHz;
if (capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate8kHz) {
// ...the forward stream is at 8 kHz.
rev_proc_rate = kSampleRate8kHz;
} else {
if (formats_.api_format.reverse_input_stream().sample_rate_hz() ==
kSampleRate32kHz) {
// ...or the input is at 32 kHz, in which case we use the splitting
// filter rather than the resampler.
rev_proc_rate = kSampleRate32kHz;
}
}
// Always downmix the reverse stream to mono for analysis. This has been
// demonstrated to work well for AEC in most practical scenarios.
formats_.rev_proc_format = StreamConfig(rev_proc_rate, 1);
if (capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate32kHz ||
capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate48kHz) {
capture_nonlocked_.split_rate = kSampleRate16kHz;
} else {
capture_nonlocked_.split_rate =
capture_nonlocked_.fwd_proc_format.sample_rate_hz();
}
return InitializeLocked();
}
void AudioProcessingImpl::SetExtraOptions(const Config& config) {
// Run in a single-threaded manner when setting the extra options.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
for (auto item : private_submodules_->component_list) {
item->SetExtraOptions(config);
}
if (capture_.transient_suppressor_enabled !=
config.Get<ExperimentalNs>().enabled) {
capture_.transient_suppressor_enabled =
config.Get<ExperimentalNs>().enabled;
InitializeTransient();
}
}
int AudioProcessingImpl::input_sample_rate_hz() const {
// Accessed from outside APM, hence a lock is needed.
rtc::CritScope cs(&crit_capture_);
return formats_.api_format.input_stream().sample_rate_hz();
}
int AudioProcessingImpl::proc_sample_rate_hz() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.fwd_proc_format.sample_rate_hz();
}
int AudioProcessingImpl::proc_split_sample_rate_hz() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.split_rate;
}
int AudioProcessingImpl::num_reverse_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return formats_.rev_proc_format.num_channels();
}
int AudioProcessingImpl::num_input_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return formats_.api_format.input_stream().num_channels();
}
int AudioProcessingImpl::num_output_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return formats_.api_format.output_stream().num_channels();
}
void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
rtc::CritScope cs(&crit_capture_);
capture_.output_will_be_muted = muted;
if (private_submodules_->agc_manager.get()) {
private_submodules_->agc_manager->SetCaptureMuted(
capture_.output_will_be_muted);
}
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
size_t samples_per_channel,
int input_sample_rate_hz,
ChannelLayout input_layout,
int output_sample_rate_hz,
ChannelLayout output_layout,
float* const* dest) {
StreamConfig input_stream;
StreamConfig output_stream;
{
// Access the formats_.api_format.input_stream beneath the capture lock.
// The lock must be released as it is later required in the call
// to ProcessStream(,,,);
rtc::CritScope cs(&crit_capture_);
input_stream = formats_.api_format.input_stream();
output_stream = formats_.api_format.output_stream();
}
input_stream.set_sample_rate_hz(input_sample_rate_hz);
input_stream.set_num_channels(ChannelsFromLayout(input_layout));
input_stream.set_has_keyboard(LayoutHasKeyboard(input_layout));
output_stream.set_sample_rate_hz(output_sample_rate_hz);
output_stream.set_num_channels(ChannelsFromLayout(output_layout));
output_stream.set_has_keyboard(LayoutHasKeyboard(output_layout));
if (samples_per_channel != input_stream.num_frames()) {
return kBadDataLengthError;
}
return ProcessStream(src, input_stream, output_stream, dest);
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config,
float* const* dest) {
ProcessingConfig processing_config;
{
// Acquire the capture lock in order to safely call the function
// that retrieves the render side data. This function accesses apm
// getters that need the capture lock held when being called.
rtc::CritScope cs_capture(&crit_capture_);
public_submodules_->echo_cancellation->ReadQueuedRenderData();
public_submodules_->echo_control_mobile->ReadQueuedRenderData();
public_submodules_->gain_control->ReadQueuedRenderData();
if (!src || !dest) {
return kNullPointerError;
}
processing_config = formats_.api_format;
}
processing_config.input_stream() = input_config;
processing_config.output_stream() = output_config;
{
// Do conditional reinitialization.
rtc::CritScope cs_render(&crit_render_);
RETURN_ON_ERR(MaybeInitializeCapture(processing_config));
}
rtc::CritScope cs_capture(&crit_capture_);
assert(processing_config.input_stream().num_frames() ==
formats_.api_format.input_stream().num_frames());
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
RETURN_ON_ERR(WriteConfigMessage(false));
debug_dump_.capture.event_msg->set_type(audioproc::Event::STREAM);
audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream();
const size_t channel_size =
sizeof(float) * formats_.api_format.input_stream().num_frames();
for (int i = 0; i < formats_.api_format.input_stream().num_channels(); ++i)
msg->add_input_channel(src[i], channel_size);
}
#endif
capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream());
RETURN_ON_ERR(ProcessStreamLocked());
capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest);
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream();
const size_t channel_size =
sizeof(float) * formats_.api_format.output_stream().num_frames();
for (int i = 0; i < formats_.api_format.output_stream().num_channels(); ++i)
msg->add_output_channel(dest[i], channel_size);
RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(),
&crit_debug_, &debug_dump_.capture));
}
#endif
return kNoError;
}
int AudioProcessingImpl::ProcessStream(AudioFrame* frame) {
{
// Acquire the capture lock in order to safely call the function
// that retrieves the render side data. This function accesses apm
// getters that need the capture lock held when being called.
// The lock needs to be released as
// public_submodules_->echo_control_mobile->is_enabled() aquires this lock
// as well.
rtc::CritScope cs_capture(&crit_capture_);
public_submodules_->echo_cancellation->ReadQueuedRenderData();
public_submodules_->echo_control_mobile->ReadQueuedRenderData();
public_submodules_->gain_control->ReadQueuedRenderData();
}
if (!frame) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
if (public_submodules_->echo_control_mobile->is_enabled() &&
frame->sample_rate_hz_ > kMaxAECMSampleRateHz) {
LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates";
return kUnsupportedComponentError;
}
ProcessingConfig processing_config;
{
// Aquire lock for the access of api_format.
// The lock is released immediately due to the conditional
// reinitialization.
rtc::CritScope cs_capture(&crit_capture_);
// TODO(ajm): The input and output rates and channels are currently
// constrained to be identical in the int16 interface.
processing_config = formats_.api_format;
}
processing_config.input_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.input_stream().set_num_channels(frame->num_channels_);
processing_config.output_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.output_stream().set_num_channels(frame->num_channels_);
{
// Do conditional reinitialization.
rtc::CritScope cs_render(&crit_render_);
RETURN_ON_ERR(MaybeInitializeCapture(processing_config));
}
rtc::CritScope cs_capture(&crit_capture_);
if (frame->samples_per_channel_ !=
formats_.api_format.input_stream().num_frames()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
debug_dump_.capture.event_msg->set_type(audioproc::Event::STREAM);
audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream();
const size_t data_size =
sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_;
msg->set_input_data(frame->data_, data_size);
}
#endif
capture_.capture_audio->DeinterleaveFrom(frame);
RETURN_ON_ERR(ProcessStreamLocked());
capture_.capture_audio->InterleaveTo(frame,
output_copy_needed(is_data_processed()));
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream();
const size_t data_size =
sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_;
msg->set_output_data(frame->data_, data_size);
RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(),
&crit_debug_, &debug_dump_.capture));
}
#endif
return kNoError;
}
int AudioProcessingImpl::ProcessStreamLocked() {
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream();
msg->set_delay(capture_nonlocked_.stream_delay_ms);
msg->set_drift(
public_submodules_->echo_cancellation->stream_drift_samples());
msg->set_level(gain_control()->stream_analog_level());
msg->set_keypress(capture_.key_pressed);
}
#endif
MaybeUpdateHistograms();
AudioBuffer* ca = capture_.capture_audio.get(); // For brevity.
if (constants_.use_new_agc &&
public_submodules_->gain_control->is_enabled()) {
private_submodules_->agc_manager->AnalyzePreProcess(
ca->channels()[0], ca->num_channels(),
capture_nonlocked_.fwd_proc_format.num_frames());
}
bool data_processed = is_data_processed();
if (analysis_needed(data_processed)) {
ca->SplitIntoFrequencyBands();
}
if (constants_.intelligibility_enabled) {
public_submodules_->intelligibility_enhancer->AnalyzeCaptureAudio(
ca->split_channels_f(kBand0To8kHz), capture_nonlocked_.split_rate,
ca->num_channels());
}
if (constants_.beamformer_enabled) {
private_submodules_->beamformer->ProcessChunk(*ca->split_data_f(),
ca->split_data_f());
ca->set_num_channels(1);
}
public_submodules_->high_pass_filter->ProcessCaptureAudio(ca);
RETURN_ON_ERR(public_submodules_->gain_control->AnalyzeCaptureAudio(ca));
public_submodules_->noise_suppression->AnalyzeCaptureAudio(ca);
RETURN_ON_ERR(public_submodules_->echo_cancellation->ProcessCaptureAudio(ca));
if (public_submodules_->echo_control_mobile->is_enabled() &&
public_submodules_->noise_suppression->is_enabled()) {
ca->CopyLowPassToReference();
}
public_submodules_->noise_suppression->ProcessCaptureAudio(ca);
RETURN_ON_ERR(
public_submodules_->echo_control_mobile->ProcessCaptureAudio(ca));
RETURN_ON_ERR(public_submodules_->voice_detection->ProcessCaptureAudio(ca));
if (constants_.use_new_agc &&
public_submodules_->gain_control->is_enabled() &&
(!constants_.beamformer_enabled ||
private_submodules_->beamformer->is_target_present())) {
private_submodules_->agc_manager->Process(
ca->split_bands_const(0)[kBand0To8kHz], ca->num_frames_per_band(),
capture_nonlocked_.split_rate);
}
RETURN_ON_ERR(public_submodules_->gain_control->ProcessCaptureAudio(ca));
if (synthesis_needed(data_processed)) {
ca->MergeFrequencyBands();
}
// TODO(aluebs): Investigate if the transient suppression placement should be
// before or after the AGC.
if (capture_.transient_suppressor_enabled) {
float voice_probability =
private_submodules_->agc_manager.get()
? private_submodules_->agc_manager->voice_probability()
: 1.f;
public_submodules_->transient_suppressor->Suppress(
ca->channels_f()[0], ca->num_frames(), ca->num_channels(),
ca->split_bands_const_f(0)[kBand0To8kHz], ca->num_frames_per_band(),
ca->keyboard_data(), ca->num_keyboard_frames(), voice_probability,
capture_.key_pressed);
}
// The level estimator operates on the recombined data.
public_submodules_->level_estimator->ProcessStream(ca);
capture_.was_stream_delay_set = false;
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data,
size_t samples_per_channel,
int rev_sample_rate_hz,
ChannelLayout layout) {
rtc::CritScope cs(&crit_render_);
const StreamConfig reverse_config = {
rev_sample_rate_hz, ChannelsFromLayout(layout), LayoutHasKeyboard(layout),
};
if (samples_per_channel != reverse_config.num_frames()) {
return kBadDataLengthError;
}
return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config);
}
int AudioProcessingImpl::ProcessReverseStream(
const float* const* src,
const StreamConfig& reverse_input_config,
const StreamConfig& reverse_output_config,
float* const* dest) {
rtc::CritScope cs(&crit_render_);
RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, reverse_input_config,
reverse_output_config));
if (is_rev_processed()) {
render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(),
dest);
} else if (render_check_rev_conversion_needed()) {
render_.render_converter->Convert(src, reverse_input_config.num_samples(),
dest,
reverse_output_config.num_samples());
} else {
CopyAudioIfNeeded(src, reverse_input_config.num_frames(),
reverse_input_config.num_channels(), dest);
}
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStreamLocked(
const float* const* src,
const StreamConfig& reverse_input_config,
const StreamConfig& reverse_output_config) {
if (src == nullptr) {
return kNullPointerError;
}
if (reverse_input_config.num_channels() <= 0) {
return kBadNumberChannelsError;
}
ProcessingConfig processing_config = formats_.api_format;
processing_config.reverse_input_stream() = reverse_input_config;
processing_config.reverse_output_stream() = reverse_output_config;
RETURN_ON_ERR(MaybeInitializeRender(processing_config));
assert(reverse_input_config.num_frames() ==
formats_.api_format.reverse_input_stream().num_frames());
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
debug_dump_.render.event_msg->set_type(audioproc::Event::REVERSE_STREAM);
audioproc::ReverseStream* msg =
debug_dump_.render.event_msg->mutable_reverse_stream();
const size_t channel_size =
sizeof(float) * formats_.api_format.reverse_input_stream().num_frames();
for (int i = 0;
i < formats_.api_format.reverse_input_stream().num_channels(); ++i)
msg->add_channel(src[i], channel_size);
RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(),
&crit_debug_, &debug_dump_.render));
}
#endif
render_.render_audio->CopyFrom(src,
formats_.api_format.reverse_input_stream());
return ProcessReverseStreamLocked();
}
int AudioProcessingImpl::ProcessReverseStream(AudioFrame* frame) {
RETURN_ON_ERR(AnalyzeReverseStream(frame));
rtc::CritScope cs(&crit_render_);
if (is_rev_processed()) {
render_.render_audio->InterleaveTo(frame, true);
}
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) {
rtc::CritScope cs(&crit_render_);
if (frame == nullptr) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
// This interface does not tolerate different forward and reverse rates.
if (frame->sample_rate_hz_ !=
formats_.api_format.input_stream().sample_rate_hz()) {
return kBadSampleRateError;
}
if (frame->num_channels_ <= 0) {
return kBadNumberChannelsError;
}
ProcessingConfig processing_config = formats_.api_format;
processing_config.reverse_input_stream().set_sample_rate_hz(
frame->sample_rate_hz_);
processing_config.reverse_input_stream().set_num_channels(
frame->num_channels_);
processing_config.reverse_output_stream().set_sample_rate_hz(
frame->sample_rate_hz_);
processing_config.reverse_output_stream().set_num_channels(
frame->num_channels_);
RETURN_ON_ERR(MaybeInitializeRender(processing_config));
if (frame->samples_per_channel_ !=
formats_.api_format.reverse_input_stream().num_frames()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_dump_.debug_file->Open()) {
debug_dump_.render.event_msg->set_type(audioproc::Event::REVERSE_STREAM);
audioproc::ReverseStream* msg =
debug_dump_.render.event_msg->mutable_reverse_stream();
const size_t data_size =
sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_;
msg->set_data(frame->data_, data_size);
RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(),
&crit_debug_, &debug_dump_.render));
}
#endif
render_.render_audio->DeinterleaveFrom(frame);
return ProcessReverseStreamLocked();
}
int AudioProcessingImpl::ProcessReverseStreamLocked() {
AudioBuffer* ra = render_.render_audio.get(); // For brevity.
if (formats_.rev_proc_format.sample_rate_hz() == kSampleRate32kHz) {
ra->SplitIntoFrequencyBands();
}
if (constants_.intelligibility_enabled) {
// Currently run in single-threaded mode when the intelligibility
// enhancer is activated.
// TODO(peah): Fix to be properly multi-threaded.
rtc::CritScope cs(&crit_capture_);
public_submodules_->intelligibility_enhancer->ProcessRenderAudio(
ra->split_channels_f(kBand0To8kHz), capture_nonlocked_.split_rate,
ra->num_channels());
}
RETURN_ON_ERR(public_submodules_->echo_cancellation->ProcessRenderAudio(ra));
RETURN_ON_ERR(
public_submodules_->echo_control_mobile->ProcessRenderAudio(ra));
if (!constants_.use_new_agc) {
RETURN_ON_ERR(public_submodules_->gain_control->ProcessRenderAudio(ra));
}
if (formats_.rev_proc_format.sample_rate_hz() == kSampleRate32kHz &&
is_rev_processed()) {
ra->MergeFrequencyBands();
}
return kNoError;
}
int AudioProcessingImpl::set_stream_delay_ms(int delay) {
rtc::CritScope cs(&crit_capture_);
Error retval = kNoError;
capture_.was_stream_delay_set = true;
delay += capture_.delay_offset_ms;
if (delay < 0) {
delay = 0;
retval = kBadStreamParameterWarning;
}
// TODO(ajm): the max is rather arbitrarily chosen; investigate.
if (delay > 500) {
delay = 500;
retval = kBadStreamParameterWarning;
}
capture_nonlocked_.stream_delay_ms = delay;
return retval;
}
int AudioProcessingImpl::stream_delay_ms() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.stream_delay_ms;
}
bool AudioProcessingImpl::was_stream_delay_set() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_.was_stream_delay_set;
}
void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
rtc::CritScope cs(&crit_capture_);
capture_.key_pressed = key_pressed;
}
void AudioProcessingImpl::set_delay_offset_ms(int offset) {
rtc::CritScope cs(&crit_capture_);
capture_.delay_offset_ms = offset;
}
int AudioProcessingImpl::delay_offset_ms() const {
rtc::CritScope cs(&crit_capture_);
return capture_.delay_offset_ms;
}
int AudioProcessingImpl::StartDebugRecording(
const char filename[AudioProcessing::kMaxFilenameSize]) {
// Run in a single-threaded manner.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
static_assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize, "");
if (filename == nullptr) {
return kNullPointerError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stop any ongoing recording.
if (debug_dump_.debug_file->Open()) {
if (debug_dump_.debug_file->CloseFile() == -1) {
return kFileError;
}
}
if (debug_dump_.debug_file->OpenFile(filename, false) == -1) {
debug_dump_.debug_file->CloseFile();
return kFileError;
}
RETURN_ON_ERR(WriteConfigMessage(true));
RETURN_ON_ERR(WriteInitMessage());
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
int AudioProcessingImpl::StartDebugRecording(FILE* handle) {
// Run in a single-threaded manner.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
if (handle == nullptr) {
return kNullPointerError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stop any ongoing recording.
if (debug_dump_.debug_file->Open()) {
if (debug_dump_.debug_file->CloseFile() == -1) {
return kFileError;
}
}
if (debug_dump_.debug_file->OpenFromFileHandle(handle, true, false) == -1) {
return kFileError;
}
RETURN_ON_ERR(WriteConfigMessage(true));
RETURN_ON_ERR(WriteInitMessage());
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
int AudioProcessingImpl::StartDebugRecordingForPlatformFile(
rtc::PlatformFile handle) {
// Run in a single-threaded manner.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
FILE* stream = rtc::FdopenPlatformFileForWriting(handle);
return StartDebugRecording(stream);
}
int AudioProcessingImpl::StopDebugRecording() {
// Run in a single-threaded manner.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// We just return if recording hasn't started.
if (debug_dump_.debug_file->Open()) {
if (debug_dump_.debug_file->CloseFile() == -1) {
return kFileError;
}
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
EchoCancellation* AudioProcessingImpl::echo_cancellation() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
return public_submodules_->echo_cancellation;
}
EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
return public_submodules_->echo_control_mobile;
}
GainControl* AudioProcessingImpl::gain_control() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
if (constants_.use_new_agc) {
return public_submodules_->gain_control_for_new_agc.get();
}
return public_submodules_->gain_control;
}
HighPassFilter* AudioProcessingImpl::high_pass_filter() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
return public_submodules_->high_pass_filter.get();
}
LevelEstimator* AudioProcessingImpl::level_estimator() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
return public_submodules_->level_estimator.get();
}
NoiseSuppression* AudioProcessingImpl::noise_suppression() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
return public_submodules_->noise_suppression.get();
}
VoiceDetection* AudioProcessingImpl::voice_detection() const {
// Adding a lock here has no effect as it allows any access to the submodule
// from the returned pointer.
return public_submodules_->voice_detection;
}
bool AudioProcessingImpl::is_data_processed() const {
if (constants_.beamformer_enabled) {
return true;
}
int enabled_count = 0;
for (auto item : private_submodules_->component_list) {
if (item->is_component_enabled()) {
enabled_count++;
}
}
if (public_submodules_->high_pass_filter->is_enabled()) {
enabled_count++;
}
if (public_submodules_->noise_suppression->is_enabled()) {
enabled_count++;
}
if (public_submodules_->level_estimator->is_enabled()) {
enabled_count++;
}
// Data is unchanged if no components are enabled, or if only
// public_submodules_->level_estimator
// or public_submodules_->voice_detection is enabled.
if (enabled_count == 0) {
return false;
} else if (enabled_count == 1) {
if (public_submodules_->level_estimator->is_enabled() ||
public_submodules_->voice_detection->is_enabled()) {
return false;
}
} else if (enabled_count == 2) {
if (public_submodules_->level_estimator->is_enabled() &&
public_submodules_->voice_detection->is_enabled()) {
return false;
}
}
return true;
}
bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const {
// Check if we've upmixed or downmixed the audio.
return ((formats_.api_format.output_stream().num_channels() !=
formats_.api_format.input_stream().num_channels()) ||
is_data_processed || capture_.transient_suppressor_enabled);
}
bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const {
return (is_data_processed &&
(capture_nonlocked_.fwd_proc_format.sample_rate_hz() ==
kSampleRate32kHz ||
capture_nonlocked_.fwd_proc_format.sample_rate_hz() ==
kSampleRate48kHz));
}
bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const {
if (!is_data_processed &&
!public_submodules_->voice_detection->is_enabled() &&
!capture_.transient_suppressor_enabled) {
// Only public_submodules_->level_estimator is enabled.
return false;
} else if (capture_nonlocked_.fwd_proc_format.sample_rate_hz() ==
kSampleRate32kHz ||
capture_nonlocked_.fwd_proc_format.sample_rate_hz() ==
kSampleRate48kHz) {
// Something besides public_submodules_->level_estimator is enabled, and we
// have super-wb.
return true;
}
return false;
}
bool AudioProcessingImpl::is_rev_processed() const {
return constants_.intelligibility_enabled &&
public_submodules_->intelligibility_enhancer->active();
}
bool AudioProcessingImpl::render_check_rev_conversion_needed() const {
return rev_conversion_needed();
}
bool AudioProcessingImpl::rev_conversion_needed() const {
return (formats_.api_format.reverse_input_stream() !=
formats_.api_format.reverse_output_stream());
}
void AudioProcessingImpl::InitializeExperimentalAgc() {
if (constants_.use_new_agc) {
if (!private_submodules_->agc_manager.get()) {
private_submodules_->agc_manager.reset(new AgcManagerDirect(
public_submodules_->gain_control,
public_submodules_->gain_control_for_new_agc.get(),
constants_.agc_startup_min_volume));
}
private_submodules_->agc_manager->Initialize();
private_submodules_->agc_manager->SetCaptureMuted(
capture_.output_will_be_muted);
}
}
void AudioProcessingImpl::InitializeTransient() {
if (capture_.transient_suppressor_enabled) {
if (!public_submodules_->transient_suppressor.get()) {
public_submodules_->transient_suppressor.reset(new TransientSuppressor());
}
public_submodules_->transient_suppressor->Initialize(
capture_nonlocked_.fwd_proc_format.sample_rate_hz(),
capture_nonlocked_.split_rate,
formats_.api_format.output_stream().num_channels());
}
}
void AudioProcessingImpl::InitializeBeamformer() {
if (constants_.beamformer_enabled) {
if (!private_submodules_->beamformer) {
private_submodules_->beamformer.reset(new NonlinearBeamformer(
constants_.array_geometry, constants_.target_direction));
}
private_submodules_->beamformer->Initialize(kChunkSizeMs,
capture_nonlocked_.split_rate);
}
}
void AudioProcessingImpl::InitializeIntelligibility() {
if (constants_.intelligibility_enabled) {
IntelligibilityEnhancer::Config config;
config.sample_rate_hz = capture_nonlocked_.split_rate;
config.num_capture_channels = capture_.capture_audio->num_channels();
config.num_render_channels = render_.render_audio->num_channels();
public_submodules_->intelligibility_enhancer.reset(
new IntelligibilityEnhancer(config));
}
}
void AudioProcessingImpl::InitializeHighPassFilter() {
public_submodules_->high_pass_filter->Initialize(num_output_channels(),
proc_sample_rate_hz());
}
void AudioProcessingImpl::InitializeNoiseSuppression() {
public_submodules_->noise_suppression->Initialize(num_output_channels(),
proc_sample_rate_hz());
}
void AudioProcessingImpl::InitializeLevelEstimator() {
public_submodules_->level_estimator->Initialize();
}
void AudioProcessingImpl::MaybeUpdateHistograms() {
static const int kMinDiffDelayMs = 60;
if (echo_cancellation()->is_enabled()) {
// Activate delay_jumps_ counters if we know echo_cancellation is runnning.
// If a stream has echo we know that the echo_cancellation is in process.
if (capture_.stream_delay_jumps == -1 &&
echo_cancellation()->stream_has_echo()) {
capture_.stream_delay_jumps = 0;
}
if (capture_.aec_system_delay_jumps == -1 &&
echo_cancellation()->stream_has_echo()) {
capture_.aec_system_delay_jumps = 0;
}
// Detect a jump in platform reported system delay and log the difference.
const int diff_stream_delay_ms =
capture_nonlocked_.stream_delay_ms - capture_.last_stream_delay_ms;
if (diff_stream_delay_ms > kMinDiffDelayMs &&
capture_.last_stream_delay_ms != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.PlatformReportedStreamDelayJump",
diff_stream_delay_ms, kMinDiffDelayMs, 1000, 100);
if (capture_.stream_delay_jumps == -1) {
capture_.stream_delay_jumps = 0; // Activate counter if needed.
}
capture_.stream_delay_jumps++;
}
capture_.last_stream_delay_ms = capture_nonlocked_.stream_delay_ms;
// Detect a jump in AEC system delay and log the difference.
const int frames_per_ms =
rtc::CheckedDivExact(capture_nonlocked_.split_rate, 1000);
const int aec_system_delay_ms =
WebRtcAec_system_delay(echo_cancellation()->aec_core()) / frames_per_ms;
const int diff_aec_system_delay_ms =
aec_system_delay_ms - capture_.last_aec_system_delay_ms;
if (diff_aec_system_delay_ms > kMinDiffDelayMs &&
capture_.last_aec_system_delay_ms != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecSystemDelayJump",
diff_aec_system_delay_ms, kMinDiffDelayMs, 1000,
100);
if (capture_.aec_system_delay_jumps == -1) {
capture_.aec_system_delay_jumps = 0; // Activate counter if needed.
}
capture_.aec_system_delay_jumps++;
}
capture_.last_aec_system_delay_ms = aec_system_delay_ms;
}
}
void AudioProcessingImpl::UpdateHistogramsOnCallEnd() {
// Run in a single-threaded manner.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
if (capture_.stream_delay_jumps > -1) {
RTC_HISTOGRAM_ENUMERATION(
"WebRTC.Audio.NumOfPlatformReportedStreamDelayJumps",
capture_.stream_delay_jumps, 51);
}
capture_.stream_delay_jumps = -1;
capture_.last_stream_delay_ms = 0;
if (capture_.aec_system_delay_jumps > -1) {
RTC_HISTOGRAM_ENUMERATION("WebRTC.Audio.NumOfAecSystemDelayJumps",
capture_.aec_system_delay_jumps, 51);
}
capture_.aec_system_delay_jumps = -1;
capture_.last_aec_system_delay_ms = 0;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
int AudioProcessingImpl::WriteMessageToDebugFile(
FileWrapper* debug_file,
rtc::CriticalSection* crit_debug,
ApmDebugDumpThreadState* debug_state) {
int32_t size = debug_state->event_msg->ByteSize();
if (size <= 0) {
return kUnspecifiedError;
}
#if defined(WEBRTC_ARCH_BIG_ENDIAN)
// TODO(ajm): Use little-endian "on the wire". For the moment, we can be
// pretty safe in assuming little-endian.
#endif
if (!debug_state->event_msg->SerializeToString(&debug_state->event_str)) {
return kUnspecifiedError;
}
{
// Ensure atomic writes of the message.
rtc::CritScope cs_capture(crit_debug);
// Write message preceded by its size.
if (!debug_file->Write(&size, sizeof(int32_t))) {
return kFileError;
}
if (!debug_file->Write(debug_state->event_str.data(),
debug_state->event_str.length())) {
return kFileError;
}
}
debug_state->event_msg->Clear();
return kNoError;
}
int AudioProcessingImpl::WriteInitMessage() {
debug_dump_.capture.event_msg->set_type(audioproc::Event::INIT);
audioproc::Init* msg = debug_dump_.capture.event_msg->mutable_init();
msg->set_sample_rate(formats_.api_format.input_stream().sample_rate_hz());
msg->set_num_input_channels(
formats_.api_format.input_stream().num_channels());
msg->set_num_output_channels(
formats_.api_format.output_stream().num_channels());
msg->set_num_reverse_channels(
formats_.api_format.reverse_input_stream().num_channels());
msg->set_reverse_sample_rate(
formats_.api_format.reverse_input_stream().sample_rate_hz());
msg->set_output_sample_rate(
formats_.api_format.output_stream().sample_rate_hz());
// TODO(ekmeyerson): Add reverse output fields to
// debug_dump_.capture.event_msg.
RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(),
&crit_debug_, &debug_dump_.capture));
return kNoError;
}
int AudioProcessingImpl::WriteConfigMessage(bool forced) {
audioproc::Config config;
config.set_aec_enabled(public_submodules_->echo_cancellation->is_enabled());
config.set_aec_delay_agnostic_enabled(
public_submodules_->echo_cancellation->is_delay_agnostic_enabled());
config.set_aec_drift_compensation_enabled(
public_submodules_->echo_cancellation->is_drift_compensation_enabled());
config.set_aec_extended_filter_enabled(
public_submodules_->echo_cancellation->is_extended_filter_enabled());
config.set_aec_suppression_level(static_cast<int>(
public_submodules_->echo_cancellation->suppression_level()));
config.set_aecm_enabled(
public_submodules_->echo_control_mobile->is_enabled());
config.set_aecm_comfort_noise_enabled(
public_submodules_->echo_control_mobile->is_comfort_noise_enabled());
config.set_aecm_routing_mode(static_cast<int>(
public_submodules_->echo_control_mobile->routing_mode()));
config.set_agc_enabled(public_submodules_->gain_control->is_enabled());
config.set_agc_mode(
static_cast<int>(public_submodules_->gain_control->mode()));
config.set_agc_limiter_enabled(
public_submodules_->gain_control->is_limiter_enabled());
config.set_noise_robust_agc_enabled(constants_.use_new_agc);
config.set_hpf_enabled(public_submodules_->high_pass_filter->is_enabled());
config.set_ns_enabled(public_submodules_->noise_suppression->is_enabled());
config.set_ns_level(
static_cast<int>(public_submodules_->noise_suppression->level()));
config.set_transient_suppression_enabled(
capture_.transient_suppressor_enabled);
std::string serialized_config = config.SerializeAsString();
if (!forced &&
debug_dump_.capture.last_serialized_config == serialized_config) {
return kNoError;
}
debug_dump_.capture.last_serialized_config = serialized_config;
debug_dump_.capture.event_msg->set_type(audioproc::Event::CONFIG);
debug_dump_.capture.event_msg->mutable_config()->CopyFrom(config);
RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(),
&crit_debug_, &debug_dump_.capture));
return kNoError;
}
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
} // namespace webrtc