Files
platform-external-webrtc/webrtc/modules/video_capture/video_capture_impl.cc
pkasting@chromium.org 0b1534c52e Use int64_t for milliseconds more often, primarily for TimeUntilNextProcess.
This fixes a variety of MSVC warnings about value truncations when implicitly
storing the 64-bit values we get back from e.g. TimeTicks in 32-bit objects, and
removes the need for a number of explicit casts.

This also moves a number of constants so they're declared right where they're used, which is easier to read and maintain, and makes some of them of integral type rather than using the "enum hack".

BUG=chromium:81439
TEST=none
R=tommi@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/33649004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7905 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-12-15 22:09:40 +00:00

425 lines
13 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_capture/video_capture_impl.h"
#include <stdlib.h>
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/modules/video_capture/video_capture_config.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/ref_count.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
namespace webrtc
{
namespace videocapturemodule
{
VideoCaptureModule* VideoCaptureImpl::Create(
const int32_t id,
VideoCaptureExternal*& externalCapture)
{
RefCountImpl<VideoCaptureImpl>* implementation =
new RefCountImpl<VideoCaptureImpl>(id);
externalCapture = implementation;
return implementation;
}
const char* VideoCaptureImpl::CurrentDeviceName() const
{
return _deviceUniqueId;
}
// static
int32_t VideoCaptureImpl::RotationFromDegrees(int degrees,
VideoCaptureRotation* rotation) {
switch (degrees) {
case 0:
*rotation = kCameraRotate0;
return 0;
case 90:
*rotation = kCameraRotate90;
return 0;
case 180:
*rotation = kCameraRotate180;
return 0;
case 270:
*rotation = kCameraRotate270;
return 0;
default:
return -1;;
}
}
// static
int32_t VideoCaptureImpl::RotationInDegrees(VideoCaptureRotation rotation,
int* degrees) {
switch (rotation) {
case kCameraRotate0:
*degrees = 0;
return 0;
case kCameraRotate90:
*degrees = 90;
return 0;
case kCameraRotate180:
*degrees = 180;
return 0;
case kCameraRotate270:
*degrees = 270;
return 0;
}
return -1;
}
int32_t VideoCaptureImpl::ChangeUniqueId(const int32_t id)
{
_id = id;
return 0;
}
// returns the number of milliseconds until the module want a worker thread to call Process
int64_t VideoCaptureImpl::TimeUntilNextProcess()
{
CriticalSectionScoped cs(&_callBackCs);
const int64_t kProcessIntervalMs = 300;
return kProcessIntervalMs -
(TickTime::Now() - _lastProcessTime).Milliseconds();
}
// Process any pending tasks such as timeouts
int32_t VideoCaptureImpl::Process()
{
CriticalSectionScoped cs(&_callBackCs);
const TickTime now = TickTime::Now();
_lastProcessTime = TickTime::Now();
// Handle No picture alarm
if (_lastProcessFrameCount.Ticks() == _incomingFrameTimes[0].Ticks() &&
_captureAlarm != Raised)
{
if (_noPictureAlarmCallBack && _captureCallBack)
{
_captureAlarm = Raised;
_captureCallBack->OnNoPictureAlarm(_id, _captureAlarm);
}
}
else if (_lastProcessFrameCount.Ticks() != _incomingFrameTimes[0].Ticks() &&
_captureAlarm != Cleared)
{
if (_noPictureAlarmCallBack && _captureCallBack)
{
_captureAlarm = Cleared;
_captureCallBack->OnNoPictureAlarm(_id, _captureAlarm);
}
}
// Handle frame rate callback
if ((now - _lastFrameRateCallbackTime).Milliseconds()
> kFrameRateCallbackInterval)
{
if (_frameRateCallBack && _captureCallBack)
{
const uint32_t frameRate = CalculateFrameRate(now);
_captureCallBack->OnCaptureFrameRate(_id, frameRate);
}
_lastFrameRateCallbackTime = now; // Can be set by EnableFrameRateCallback
}
_lastProcessFrameCount = _incomingFrameTimes[0];
return 0;
}
VideoCaptureImpl::VideoCaptureImpl(const int32_t id)
: _id(id),
_deviceUniqueId(NULL),
_apiCs(*CriticalSectionWrapper::CreateCriticalSection()),
_captureDelay(0),
_requestedCapability(),
_callBackCs(*CriticalSectionWrapper::CreateCriticalSection()),
_lastProcessTime(TickTime::Now()),
_lastFrameRateCallbackTime(TickTime::Now()),
_frameRateCallBack(false),
_noPictureAlarmCallBack(false),
_captureAlarm(Cleared),
_setCaptureDelay(0),
_dataCallBack(NULL),
_captureCallBack(NULL),
_lastProcessFrameCount(TickTime::Now()),
_rotateFrame(kRotateNone),
last_capture_time_(0),
delta_ntp_internal_ms_(
Clock::GetRealTimeClock()->CurrentNtpInMilliseconds() -
TickTime::MillisecondTimestamp()) {
_requestedCapability.width = kDefaultWidth;
_requestedCapability.height = kDefaultHeight;
_requestedCapability.maxFPS = 30;
_requestedCapability.rawType = kVideoI420;
_requestedCapability.codecType = kVideoCodecUnknown;
memset(_incomingFrameTimes, 0, sizeof(_incomingFrameTimes));
}
VideoCaptureImpl::~VideoCaptureImpl()
{
DeRegisterCaptureDataCallback();
DeRegisterCaptureCallback();
delete &_callBackCs;
delete &_apiCs;
if (_deviceUniqueId)
delete[] _deviceUniqueId;
}
void VideoCaptureImpl::RegisterCaptureDataCallback(
VideoCaptureDataCallback& dataCallBack) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_dataCallBack = &dataCallBack;
}
void VideoCaptureImpl::DeRegisterCaptureDataCallback() {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_dataCallBack = NULL;
}
void VideoCaptureImpl::RegisterCaptureCallback(VideoCaptureFeedBack& callBack) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_captureCallBack = &callBack;
}
void VideoCaptureImpl::DeRegisterCaptureCallback() {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_captureCallBack = NULL;
}
void VideoCaptureImpl::SetCaptureDelay(int32_t delayMS) {
CriticalSectionScoped cs(&_apiCs);
_captureDelay = delayMS;
}
int32_t VideoCaptureImpl::CaptureDelay()
{
CriticalSectionScoped cs(&_apiCs);
return _setCaptureDelay;
}
int32_t VideoCaptureImpl::DeliverCapturedFrame(I420VideoFrame& captureFrame,
int64_t capture_time) {
UpdateFrameCount(); // frame count used for local frame rate callback.
const bool callOnCaptureDelayChanged = _setCaptureDelay != _captureDelay;
// Capture delay changed
if (_setCaptureDelay != _captureDelay) {
_setCaptureDelay = _captureDelay;
}
// Set the capture time
if (capture_time != 0) {
captureFrame.set_render_time_ms(capture_time - delta_ntp_internal_ms_);
} else {
captureFrame.set_render_time_ms(TickTime::MillisecondTimestamp());
}
if (captureFrame.render_time_ms() == last_capture_time_) {
// We don't allow the same capture time for two frames, drop this one.
return -1;
}
last_capture_time_ = captureFrame.render_time_ms();
if (_dataCallBack) {
if (callOnCaptureDelayChanged) {
_dataCallBack->OnCaptureDelayChanged(_id, _captureDelay);
}
_dataCallBack->OnIncomingCapturedFrame(_id, captureFrame);
}
return 0;
}
int32_t VideoCaptureImpl::IncomingFrame(
uint8_t* videoFrame,
size_t videoFrameLength,
const VideoCaptureCapability& frameInfo,
int64_t captureTime/*=0*/)
{
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
const int32_t width = frameInfo.width;
const int32_t height = frameInfo.height;
TRACE_EVENT1("webrtc", "VC::IncomingFrame", "capture_time", captureTime);
if (frameInfo.codecType == kVideoCodecUnknown)
{
// Not encoded, convert to I420.
const VideoType commonVideoType =
RawVideoTypeToCommonVideoVideoType(frameInfo.rawType);
if (frameInfo.rawType != kVideoMJPEG &&
CalcBufferSize(commonVideoType, width,
abs(height)) != videoFrameLength)
{
LOG(LS_ERROR) << "Wrong incoming frame length.";
return -1;
}
int stride_y = width;
int stride_uv = (width + 1) / 2;
int target_width = width;
int target_height = height;
// Rotating resolution when for 90/270 degree rotations.
if (_rotateFrame == kRotate90 || _rotateFrame == kRotate270) {
target_width = abs(height);
target_height = width;
}
// TODO(mikhal): Update correct aligned stride values.
//Calc16ByteAlignedStride(target_width, &stride_y, &stride_uv);
// Setting absolute height (in case it was negative).
// In Windows, the image starts bottom left, instead of top left.
// Setting a negative source height, inverts the image (within LibYuv).
int ret = _captureFrame.CreateEmptyFrame(target_width,
abs(target_height),
stride_y,
stride_uv, stride_uv);
if (ret < 0)
{
LOG(LS_ERROR) << "Failed to create empty frame, this should only "
"happen due to bad parameters.";
return -1;
}
const int conversionResult = ConvertToI420(commonVideoType,
videoFrame,
0, 0, // No cropping
width, height,
videoFrameLength,
_rotateFrame,
&_captureFrame);
if (conversionResult < 0)
{
LOG(LS_ERROR) << "Failed to convert capture frame from type "
<< frameInfo.rawType << "to I420.";
return -1;
}
DeliverCapturedFrame(_captureFrame, captureTime);
}
else // Encoded format
{
assert(false);
return -1;
}
return 0;
}
int32_t VideoCaptureImpl::IncomingI420VideoFrame(I420VideoFrame* video_frame,
int64_t captureTime) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
DeliverCapturedFrame(*video_frame, captureTime);
return 0;
}
int32_t VideoCaptureImpl::SetCaptureRotation(VideoCaptureRotation rotation) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
switch (rotation){
case kCameraRotate0:
_rotateFrame = kRotateNone;
break;
case kCameraRotate90:
_rotateFrame = kRotate90;
break;
case kCameraRotate180:
_rotateFrame = kRotate180;
break;
case kCameraRotate270:
_rotateFrame = kRotate270;
break;
default:
return -1;
}
return 0;
}
void VideoCaptureImpl::EnableFrameRateCallback(const bool enable) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_frameRateCallBack = enable;
if (enable)
{
_lastFrameRateCallbackTime = TickTime::Now();
}
}
void VideoCaptureImpl::EnableNoPictureAlarm(const bool enable) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_noPictureAlarmCallBack = enable;
}
void VideoCaptureImpl::UpdateFrameCount()
{
if (_incomingFrameTimes[0].MicrosecondTimestamp() == 0)
{
// first no shift
}
else
{
// shift
for (int i = (kFrameRateCountHistorySize - 2); i >= 0; i--)
{
_incomingFrameTimes[i + 1] = _incomingFrameTimes[i];
}
}
_incomingFrameTimes[0] = TickTime::Now();
}
uint32_t VideoCaptureImpl::CalculateFrameRate(const TickTime& now)
{
int32_t num = 0;
int32_t nrOfFrames = 0;
for (num = 1; num < (kFrameRateCountHistorySize - 1); num++)
{
if (_incomingFrameTimes[num].Ticks() <= 0
|| (now - _incomingFrameTimes[num]).Milliseconds() > kFrameRateHistoryWindowMs) // don't use data older than 2sec
{
break;
}
else
{
nrOfFrames++;
}
}
if (num > 1)
{
int64_t diff = (now - _incomingFrameTimes[num - 1]).Milliseconds();
if (diff > 0)
{
return uint32_t((nrOfFrames * 1000.0f / diff) + 0.5f);
}
}
return nrOfFrames;
}
} // namespace videocapturemodule
} // namespace webrtc