Files
platform-external-webrtc/webrtc/modules/audio_processing/aec/echo_cancellation.c
bjornv@webrtc.org 71e91f3b64 Refactor AEC: PowerLevel
* Style changes
* Tested with audioproc_unittest and trybots

TEST=none
BUG=none

Review URL: https://webrtc-codereview.appspot.com/1116005

git-svn-id: http://webrtc.googlecode.com/svn/trunk@3551 4adac7df-926f-26a2-2b94-8c16560cd09d
2013-02-20 19:24:50 +00:00

754 lines
22 KiB
C

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Contains the API functions for the AEC.
*/
#include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h"
#include <math.h>
#ifdef WEBRTC_AEC_DEBUG_DUMP
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aec/aec_core.h"
#include "webrtc/modules/audio_processing/aec/aec_resampler.h"
#include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
#include "webrtc/modules/audio_processing/utility/ring_buffer.h"
#include "webrtc/typedefs.h"
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
// TODO(bjornv): Replace with kResamplerBufferSize
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const int kMaxBufSizeStart = 62; // In partitions
static const int sampMsNb = 8; // samples per ms in nb
static const int initCheck = 42;
#ifdef WEBRTC_AEC_DEBUG_DUMP
int webrtc_aec_instance_count = 0;
#endif
// Estimates delay to set the position of the far-end buffer read pointer
// (controlled by knownDelay)
static int EstBufDelay(aecpc_t *aecInst);
WebRtc_Word32 WebRtcAec_Create(void **aecInst)
{
aecpc_t *aecpc;
if (aecInst == NULL) {
return -1;
}
aecpc = malloc(sizeof(aecpc_t));
*aecInst = aecpc;
if (aecpc == NULL) {
return -1;
}
if (WebRtcAec_CreateAec(&aecpc->aec) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
// Create far-end pre-buffer. The buffer size has to be large enough for
// largest possible drift compensation (kResamplerBufferSize) + "almost" an
// FFT buffer (PART_LEN2 - 1).
if (WebRtc_CreateBuffer(&aecpc->far_pre_buf,
PART_LEN2 + kResamplerBufferSize,
sizeof(float)) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
aecpc->initFlag = 0;
aecpc->lastError = 0;
#ifdef WEBRTC_AEC_DEBUG_DUMP
if (WebRtc_CreateBuffer(&aecpc->far_pre_buf_s16,
PART_LEN2 + kResamplerBufferSize,
sizeof(int16_t)) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
{
char filename[64];
sprintf(filename, "aec_buf%d.dat", webrtc_aec_instance_count);
aecpc->bufFile = fopen(filename, "wb");
sprintf(filename, "aec_skew%d.dat", webrtc_aec_instance_count);
aecpc->skewFile = fopen(filename, "wb");
sprintf(filename, "aec_delay%d.dat", webrtc_aec_instance_count);
aecpc->delayFile = fopen(filename, "wb");
webrtc_aec_instance_count++;
}
#endif
return 0;
}
WebRtc_Word32 WebRtcAec_Free(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
WebRtc_FreeBuffer(aecpc->far_pre_buf);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_FreeBuffer(aecpc->far_pre_buf_s16);
fclose(aecpc->bufFile);
fclose(aecpc->skewFile);
fclose(aecpc->delayFile);
#endif
WebRtcAec_FreeAec(aecpc->aec);
WebRtcAec_FreeResampler(aecpc->resampler);
free(aecpc);
return 0;
}
WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq)
{
aecpc_t *aecpc = aecInst;
AecConfig aecConfig;
if (aecpc == NULL) {
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->sampFreq = sampFreq;
if (scSampFreq < 1 || scSampFreq > 96000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->scSampFreq = scSampFreq;
// Initialize echo canceller core
if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
if (WebRtc_InitBuffer(aecpc->far_pre_buf) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap.
aecpc->initFlag = initCheck; // indicates that initialization has been done
if (aecpc->sampFreq == 32000) {
aecpc->splitSampFreq = 16000;
}
else {
aecpc->splitSampFreq = sampFreq;
}
aecpc->skewFrCtr = 0;
aecpc->activity = 0;
aecpc->delayCtr = 0;
aecpc->sum = 0;
aecpc->counter = 0;
aecpc->checkBuffSize = 1;
aecpc->firstVal = 0;
aecpc->ECstartup = 1;
aecpc->bufSizeStart = 0;
aecpc->checkBufSizeCtr = 0;
aecpc->filtDelay = 0;
aecpc->timeForDelayChange = 0;
aecpc->knownDelay = 0;
aecpc->lastDelayDiff = 0;
aecpc->skew = 0;
aecpc->resample = kAecFalse;
aecpc->highSkewCtr = 0;
aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
// Sampling frequency multiplier (SWB is processed as 160 frame size).
aecpc->rate_factor = aecpc->splitSampFreq / 8000;
// Default settings.
aecConfig.nlpMode = kAecNlpModerate;
aecConfig.skewMode = kAecFalse;
aecConfig.metricsMode = kAecFalse;
aecConfig.delay_logging = kAecFalse;
if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
if (WebRtc_InitBuffer(aecpc->far_pre_buf_s16) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); // Start overlap.
#endif
return 0;
}
// only buffer L band for farend
WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
int newNrOfSamples = (int) nrOfSamples;
short newFarend[MAX_RESAMP_LEN];
const int16_t* farend_ptr = farend;
float tmp_farend[MAX_RESAMP_LEN];
const float* farend_float = tmp_farend;
float skew;
int i = 0;
if (aecpc == NULL) {
return -1;
}
if (farend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
skew = aecpc->skew;
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
// Resample and get a new number of samples
WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, skew,
newFarend, &newNrOfSamples);
farend_ptr = (const int16_t*) newFarend;
}
WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) +
newNrOfSamples);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_WriteBuffer(aecpc->far_pre_buf_s16, farend_ptr,
(size_t) newNrOfSamples);
#endif
// Cast to float and write the time-domain data to |far_pre_buf|.
for (i = 0; i < newNrOfSamples; i++) {
tmp_farend[i] = (float) farend_ptr[i];
}
WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_float,
(size_t) newNrOfSamples);
// Transform to frequency domain if we have enough data.
while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
// We have enough data to pass to the FFT, hence read PART_LEN2 samples.
WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**) &farend_float, tmp_farend,
PART_LEN2);
WebRtcAec_BufferFarendPartition(aecpc->aec, farend_float);
// Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_ReadBuffer(aecpc->far_pre_buf_s16, (void**) &farend_ptr, newFarend,
PART_LEN2);
WebRtc_WriteBuffer(WebRtcAec_far_time_buf(aecpc->aec),
&farend_ptr[PART_LEN], 1);
WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN);
#endif
}
return retVal;
}
WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend,
const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH,
WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
short i;
short nBlocks10ms;
short nFrames;
// Limit resampling to doubling/halving of signal
const float minSkewEst = -0.5f;
const float maxSkewEst = 1.0f;
if (aecpc == NULL) {
return -1;
}
if (nearend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (out == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
// Check for valid pointers based on sampling rate
if (aecpc->sampFreq == 32000 && nearendH == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
else if (msInSndCardBuf > 500) {
msInSndCardBuf = 500;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
// TODO(andrew): we need to investigate if this +10 is really wanted.
msInSndCardBuf += 10;
aecpc->msInSndCardBuf = msInSndCardBuf;
if (aecpc->skewMode == kAecTrue) {
if (aecpc->skewFrCtr < 25) {
aecpc->skewFrCtr++;
}
else {
retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
if (retVal == -1) {
aecpc->skew = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
}
aecpc->skew /= aecpc->sampFactor*nrOfSamples;
if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
aecpc->resample = kAecFalse;
}
else {
aecpc->resample = kAecTrue;
}
if (aecpc->skew < minSkewEst) {
aecpc->skew = minSkewEst;
}
else if (aecpc->skew > maxSkewEst) {
aecpc->skew = maxSkewEst;
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
(void)fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
#endif
}
}
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecpc->rate_factor;
if (aecpc->ECstartup) {
if (nearend != out) {
// Only needed if they don't already point to the same place.
memcpy(out, nearend, sizeof(short) * nrOfSamples);
}
// The AEC is in the start up mode
// AEC is disabled until the system delay is OK
// Mechanism to ensure that the system delay is reasonably stable.
if (aecpc->checkBuffSize) {
aecpc->checkBufSizeCtr++;
// Before we fill up the far-end buffer we require the system delay
// to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 6 consecutive 10 ms
// blocks. If it seems to be stable then we start to fill up the
// far-end buffer.
if (aecpc->counter == 0) {
aecpc->firstVal = aecpc->msInSndCardBuf;
aecpc->sum = 0;
}
if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
aecpc->sum += aecpc->msInSndCardBuf;
aecpc->counter++;
}
else {
aecpc->counter = 0;
}
if (aecpc->counter * nBlocks10ms >= 6) {
// The far-end buffer size is determined in partitions of
// PART_LEN samples. Use 75% of the average value of the system
// delay as buffer size to start with.
aecpc->bufSizeStart = WEBRTC_SPL_MIN((3 * aecpc->sum *
aecpc->rate_factor * 8) / (4 * aecpc->counter * PART_LEN),
kMaxBufSizeStart);
// Buffer size has now been determined.
aecpc->checkBuffSize = 0;
}
if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
// For really bad systems, don't disable the echo canceller for
// more than 0.5 sec.
aecpc->bufSizeStart = WEBRTC_SPL_MIN((aecpc->msInSndCardBuf *
aecpc->rate_factor * 3) / 40, kMaxBufSizeStart);
aecpc->checkBuffSize = 0;
}
}
// If |checkBuffSize| changed in the if-statement above.
if (!aecpc->checkBuffSize) {
// The system delay is now reasonably stable (or has been unstable
// for too long). When the far-end buffer is filled with
// approximately the same amount of data as reported by the system
// we end the startup phase.
int overhead_elements =
WebRtcAec_system_delay(aecpc->aec) / PART_LEN -
aecpc->bufSizeStart;
if (overhead_elements == 0) {
// Enable the AEC
aecpc->ECstartup = 0;
} else if (overhead_elements > 0) {
// TODO(bjornv): Do we need a check on how much we actually
// moved the read pointer? It should always be possible to move
// the pointer |overhead_elements| since we have only added data
// to the buffer and no delay compensation nor AEC processing
// has been done.
WebRtcAec_MoveFarReadPtr(aecpc->aec, overhead_elements);
// Enable the AEC
aecpc->ECstartup = 0;
}
}
} else {
// AEC is enabled.
EstBufDelay(aecpc);
// Note that 1 frame is supported for NB and 2 frames for WB.
for (i = 0; i < nFrames; i++) {
// Call the AEC.
WebRtcAec_ProcessFrame(aecpc->aec,
&nearend[FRAME_LEN * i],
&nearendH[FRAME_LEN * i],
aecpc->knownDelay,
&out[FRAME_LEN * i],
&outH[FRAME_LEN * i]);
// TODO(bjornv): Re-structure such that we don't have to pass
// |aecpc->knownDelay| as input. Change name to something like
// |system_buffer_diff|.
}
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
{
int16_t far_buf_size_ms = (int16_t)(WebRtcAec_system_delay(aecpc->aec) /
(sampMsNb * aecpc->rate_factor));
(void)fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile);
(void)fwrite(&aecpc->knownDelay, sizeof(aecpc->knownDelay), 1,
aecpc->delayFile);
}
#endif
return retVal;
}
int WebRtcAec_set_config(void* handle, AecConfig config) {
aecpc_t* self = (aecpc_t*)handle;
if (handle == NULL ) {
return -1;
}
if (self->initFlag != initCheck) {
self->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
self->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
self->skewMode = config.skewMode;
if (config.nlpMode != kAecNlpConservative && config.nlpMode != kAecNlpModerate
&& config.nlpMode != kAecNlpAggressive) {
self->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
self->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
self->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
WebRtcAec_SetConfigCore(self->aec, config.nlpMode, config.metricsMode,
config.delay_logging);
return 0;
}
int WebRtcAec_get_echo_status(void* handle, int* status) {
aecpc_t* self = (aecpc_t*)handle;
if (handle == NULL ) {
return -1;
}
if (status == NULL ) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (self->initFlag != initCheck) {
self->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
*status = WebRtcAec_echo_state(self->aec);
return 0;
}
int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) {
const float kUpWeight = 0.7f;
float dtmp;
int stmp;
aecpc_t* self = (aecpc_t*)handle;
Stats erl;
Stats erle;
Stats a_nlp;
if (handle == NULL ) {
return -1;
}
if (metrics == NULL ) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (self->initFlag != initCheck) {
self->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp);
// ERL
metrics->erl.instant = (int) erl.instant;
if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) {
// Use a mix between regular average and upper part average.
dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average;
metrics->erl.average = (int) dtmp;
} else {
metrics->erl.average = kOffsetLevel;
}
metrics->erl.max = (int) erl.max;
if (erl.min < (kOffsetLevel * (-1))) {
metrics->erl.min = (int) erl.min;
} else {
metrics->erl.min = kOffsetLevel;
}
// ERLE
metrics->erle.instant = (int) erle.instant;
if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) {
// Use a mix between regular average and upper part average.
dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average;
metrics->erle.average = (int) dtmp;
} else {
metrics->erle.average = kOffsetLevel;
}
metrics->erle.max = (int) erle.max;
if (erle.min < (kOffsetLevel * (-1))) {
metrics->erle.min = (int) erle.min;
} else {
metrics->erle.min = kOffsetLevel;
}
// RERL
if ((metrics->erl.average > kOffsetLevel)
&& (metrics->erle.average > kOffsetLevel)) {
stmp = metrics->erl.average + metrics->erle.average;
} else {
stmp = kOffsetLevel;
}
metrics->rerl.average = stmp;
// No other statistics needed, but returned for completeness.
metrics->rerl.instant = stmp;
metrics->rerl.max = stmp;
metrics->rerl.min = stmp;
// A_NLP
metrics->aNlp.instant = (int) a_nlp.instant;
if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) {
// Use a mix between regular average and upper part average.
dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average;
metrics->aNlp.average = (int) dtmp;
} else {
metrics->aNlp.average = kOffsetLevel;
}
metrics->aNlp.max = (int) a_nlp.max;
if (a_nlp.min < (kOffsetLevel * (-1))) {
metrics->aNlp.min = (int) a_nlp.min;
} else {
metrics->aNlp.min = kOffsetLevel;
}
return 0;
}
int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std) {
aecpc_t* self = handle;
if (handle == NULL) {
return -1;
}
if (median == NULL) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (std == NULL) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (self->initFlag != initCheck) {
self->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std) == -1) {
// Logging disabled.
self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR;
return -1;
}
return 0;
}
WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
return aecpc->lastError;
}
static int EstBufDelay(aecpc_t* aecpc) {
int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->rate_factor;
int current_delay = nSampSndCard - WebRtcAec_system_delay(aecpc->aec);
int delay_difference = 0;
// Before we proceed with the delay estimate filtering we:
// 1) Compensate for the frame that will be read.
// 2) Compensate for drift resampling.
// 3) Compensate for non-causality if needed, since the estimated delay can't
// be negative.
// 1) Compensating for the frame(s) that will be read/processed.
current_delay += FRAME_LEN * aecpc->rate_factor;
// 2) Account for resampling frame delay.
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
current_delay -= kResamplingDelay;
}
// 3) Compensate for non-causality, if needed, by flushing one block.
if (current_delay < PART_LEN) {
current_delay += WebRtcAec_MoveFarReadPtr(aecpc->aec, 1) * PART_LEN;
}
aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short) (0.8 * aecpc->filtDelay +
0.2 * current_delay));
delay_difference = aecpc->filtDelay - aecpc->knownDelay;
if (delay_difference > 224) {
if (aecpc->lastDelayDiff < 96) {
aecpc->timeForDelayChange = 0;
} else {
aecpc->timeForDelayChange++;
}
} else if (delay_difference < 96 && aecpc->knownDelay > 0) {
if (aecpc->lastDelayDiff > 224) {
aecpc->timeForDelayChange = 0;
} else {
aecpc->timeForDelayChange++;
}
} else {
aecpc->timeForDelayChange = 0;
}
aecpc->lastDelayDiff = delay_difference;
if (aecpc->timeForDelayChange > 25) {
aecpc->knownDelay = WEBRTC_SPL_MAX((int) aecpc->filtDelay - 160, 0);
}
return 0;
}