Files
platform-external-webrtc/modules/pacing/pacing_controller_unittest.cc
Erik Språng 739a5b3692 Refactors BitrateProber with unit types and absolute probe time.
Using unit types improves readability and some conversion in PacedSender
can be removed.

TimeUntilNextProbe() is replaced by NextProbeTime(), so returning an
absolute time rather than a delta. This fits better with the upcoming
TaskQueue based pacer, and is also what is already stored internally
in BitrateProber.

Bug: webrtc:10809
Change-Id: I5a4e289d2b53e99d3c0a2f4b36a966dba759d5cf
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/158743
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29670}
2019-10-31 15:34:39 +00:00

1312 lines
49 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/pacing_controller.h"
#include <algorithm>
#include <list>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "api/units/data_rate.h"
#include "modules/pacing/packet_router.h"
#include "system_wrappers/include/clock.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::Field;
using ::testing::Pointee;
using ::testing::Property;
using ::testing::Return;
namespace webrtc {
namespace test {
namespace {
constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec<900>();
constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec<1800>();
// The error stems from truncating the time interval of probe packets to integer
// values. This results in probing slightly higher than the target bitrate.
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec<150>();
const float kPaceMultiplier = 2.5f;
constexpr uint32_t kAudioSsrc = 12345;
constexpr uint32_t kVideoSsrc = 234565;
constexpr uint32_t kVideoRtxSsrc = 34567;
constexpr uint32_t kFlexFecSsrc = 45678;
constexpr DataRate kTargetRate = DataRate::KilobitsPerSec<800>();
std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketToSend::Type type,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size) {
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
packet->set_packet_type(type);
packet->SetSsrc(ssrc);
packet->SetSequenceNumber(sequence_number);
packet->set_capture_time_ms(capture_time_ms);
packet->SetPayloadSize(size);
return packet;
}
} // namespace
// Mock callback proxy, where both new and old api redirects to common mock
// methods that focus on core aspects.
class MockPacingControllerCallback : public PacingController::PacketSender {
public:
void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) override {
SendPacket(packet->Ssrc(), packet->SequenceNumber(),
packet->capture_time_ms(),
packet->packet_type() == RtpPacketToSend::Type::kRetransmission,
packet->packet_type() == RtpPacketToSend::Type::kPadding);
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize target_size) override {
std::vector<std::unique_ptr<RtpPacketToSend>> ret;
size_t padding_size = SendPadding(target_size.bytes());
if (padding_size > 0) {
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
packet->SetPayloadSize(padding_size);
packet->set_packet_type(RtpPacketToSend::Type::kPadding);
ret.emplace_back(std::move(packet));
}
return ret;
}
MOCK_METHOD5(SendPacket,
void(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_timestamp,
bool retransmission,
bool padding));
MOCK_METHOD1(SendPadding, size_t(size_t target_size));
};
// Mock callback implementing the raw api.
class MockPacketSender : public PacingController::PacketSender {
public:
MOCK_METHOD2(SendRtpPacket,
void(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info));
MOCK_METHOD1(
GeneratePadding,
std::vector<std::unique_ptr<RtpPacketToSend>>(DataSize target_size));
};
class PacingControllerPadding : public PacingController::PacketSender {
public:
static const size_t kPaddingPacketSize = 224;
PacingControllerPadding() : padding_sent_(0) {}
void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& pacing_info) override {}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize target_size) override {
size_t num_packets =
(target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize;
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
for (size_t i = 0; i < num_packets; ++i) {
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
packets.back()->SetPadding(kPaddingPacketSize);
packets.back()->set_packet_type(RtpPacketToSend::Type::kPadding);
padding_sent_ += kPaddingPacketSize;
}
return packets;
}
size_t padding_sent() { return padding_sent_; }
private:
size_t padding_sent_;
};
class PacingControllerProbing : public PacingController::PacketSender {
public:
PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {}
void SendRtpPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& pacing_info) override {
if (packet->packet_type() != RtpPacketToSend::Type::kPadding) {
++packets_sent_;
}
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize target_size) override {
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
packets.back()->SetPadding(target_size.bytes());
packets.back()->set_packet_type(RtpPacketToSend::Type::kPadding);
padding_sent_ += target_size.bytes();
return packets;
}
int packets_sent() const { return packets_sent_; }
int padding_sent() const { return padding_sent_; }
private:
int packets_sent_;
int padding_sent_;
};
class PacingControllerTest : public ::testing::Test {
protected:
PacingControllerTest() : clock_(123456) {
srand(0);
// Need to initialize PacingController after we initialize clock.
pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr,
nullptr);
Init();
}
void Init() {
pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
pacer_->CreateProbeCluster(kSecondClusterRate, /*cluster_id=*/1);
// Default to bitrate probing disabled for testing purposes. Probing tests
// have to enable probing, either by creating a new PacingController
// instance or by calling SetProbingEnabled(true).
pacer_->SetProbingEnabled(false);
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
clock_.AdvanceTime(TimeUntilNextProcess());
}
void Send(RtpPacketToSend::Type type,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size) {
pacer_->EnqueuePacket(
BuildPacket(type, ssrc, sequence_number, capture_time_ms, size));
}
void SendAndExpectPacket(RtpPacketToSend::Type type,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size) {
Send(type, ssrc, sequence_number, capture_time_ms, size);
EXPECT_CALL(
callback_,
SendPacket(ssrc, sequence_number, capture_time_ms,
type == RtpPacketToSend::Type::kRetransmission, false))
.Times(1);
}
std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketToSend::Type type) {
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
packet->set_packet_type(type);
switch (type) {
case RtpPacketToSend::Type::kAudio:
packet->SetSsrc(kAudioSsrc);
break;
case RtpPacketToSend::Type::kVideo:
packet->SetSsrc(kVideoSsrc);
break;
case RtpPacketToSend::Type::kRetransmission:
case RtpPacketToSend::Type::kPadding:
packet->SetSsrc(kVideoRtxSsrc);
break;
case RtpPacketToSend::Type::kForwardErrorCorrection:
packet->SetSsrc(kFlexFecSsrc);
break;
}
packet->SetPayloadSize(234);
return packet;
}
TimeDelta TimeUntilNextProcess() {
// TODO(bugs.webrtc.org/10809): Replace this with TimeUntilAvailableBudget()
// once ported from WIP code. For now, emulate PacedSender method.
TimeDelta elapsed_time = pacer_->TimeElapsedSinceLastProcess();
if (pacer_->IsPaused()) {
return std::max(PacingController::kPausedProcessInterval - elapsed_time,
TimeDelta::Zero());
}
Timestamp next_probe = pacer_->NextProbeTime();
if (next_probe != Timestamp::PlusInfinity()) {
return std::max(TimeDelta::Zero(), next_probe - clock_.CurrentTime());
}
const TimeDelta min_packet_limit = TimeDelta::ms(5);
return std::max(min_packet_limit - elapsed_time, TimeDelta::Zero());
}
SimulatedClock clock_;
MockPacingControllerCallback callback_;
std::unique_ptr<PacingController> pacer_;
};
class PacingControllerFieldTrialTest : public ::testing::Test {
protected:
struct MediaStream {
const RtpPacketToSend::Type type;
const uint32_t ssrc;
const size_t packet_size;
uint16_t seq_num;
};
const int kProcessIntervalsPerSecond = 1000 / 5;
PacingControllerFieldTrialTest() : clock_(123456) {}
void InsertPacket(PacingController* pacer, MediaStream* stream) {
pacer->EnqueuePacket(
BuildPacket(stream->type, stream->ssrc, stream->seq_num++,
clock_.TimeInMilliseconds(), stream->packet_size));
}
void ProcessNext(PacingController* pacer) {
clock_.AdvanceTimeMilliseconds(5);
pacer->ProcessPackets();
}
MediaStream audio{/*type*/ RtpPacketToSend::Type::kAudio,
/*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000};
MediaStream video{/*type*/ RtpPacketToSend::Type::kVideo,
/*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000};
SimulatedClock clock_;
MockPacingControllerCallback callback_;
};
TEST_F(PacingControllerFieldTrialTest, DefaultNoPaddingInSilence) {
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
// Video packet to reset last send time and provide padding data.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, SendPacket).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer.ProcessPackets();
EXPECT_CALL(callback_, SendPadding).Times(0);
// Waiting 500 ms should not trigger sending of padding.
clock_.AdvanceTimeMilliseconds(500);
pacer.ProcessPackets();
}
TEST_F(PacingControllerFieldTrialTest, PaddingInSilenceWithTrial) {
ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/");
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
// Video packet to reset last send time and provide padding data.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, SendPacket).Times(2);
clock_.AdvanceTimeMilliseconds(5);
pacer.ProcessPackets();
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000));
// Waiting 500 ms should trigger sending of padding.
clock_.AdvanceTimeMilliseconds(500);
pacer.ProcessPackets();
}
TEST_F(PacingControllerFieldTrialTest, DefaultCongestionWindowAffectsAudio) {
EXPECT_CALL(callback_, SendPadding).Times(0);
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero());
pacer.SetCongestionWindow(DataSize::bytes(800));
pacer.UpdateOutstandingData(DataSize::Zero());
// Video packet fills congestion window.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
// Audio packet blocked due to congestion.
InsertPacket(&pacer, &audio);
EXPECT_CALL(callback_, SendPacket).Times(0);
ProcessNext(&pacer);
ProcessNext(&pacer);
// Audio packet unblocked when congestion window clear.
::testing::Mock::VerifyAndClearExpectations(&callback_);
pacer.UpdateOutstandingData(DataSize::Zero());
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
}
TEST_F(PacingControllerFieldTrialTest,
CongestionWindowDoesNotAffectAudioInTrial) {
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
EXPECT_CALL(callback_, SendPadding).Times(0);
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
pacer.SetPacingRates(DataRate::bps(10000000), DataRate::Zero());
pacer.SetCongestionWindow(DataSize::bytes(800));
pacer.UpdateOutstandingData(DataSize::Zero());
// Video packet fills congestion window.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
// Audio not blocked due to congestion.
InsertPacket(&pacer, &audio);
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
}
TEST_F(PacingControllerFieldTrialTest, DefaultBudgetAffectsAudio) {
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
pacer.SetPacingRates(
DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond),
DataRate::Zero());
// Video fills budget for following process periods.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
// Audio packet blocked due to budget limit.
EXPECT_CALL(callback_, SendPacket).Times(0);
InsertPacket(&pacer, &audio);
ProcessNext(&pacer);
ProcessNext(&pacer);
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Audio packet unblocked when the budget has recovered.
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
ProcessNext(&pacer);
}
TEST_F(PacingControllerFieldTrialTest, BudgetDoesNotAffectAudioInTrial) {
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
EXPECT_CALL(callback_, SendPadding).Times(0);
PacingController pacer(&clock_, &callback_, nullptr, nullptr);
pacer.SetPacingRates(
DataRate::bps(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond),
DataRate::Zero());
// Video fills budget for following process periods.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, SendPacket).Times(1);
ProcessNext(&pacer);
// Audio packet not blocked due to budget limit.
EXPECT_CALL(callback_, SendPacket).Times(1);
InsertPacket(&pacer, &audio);
ProcessNext(&pacer);
}
TEST_F(PacingControllerTest, FirstSentPacketTimeIsSet) {
uint16_t sequence_number = 1234;
const uint32_t kSsrc = 12345;
const size_t kSizeBytes = 250;
const size_t kPacketToSend = 3;
const Timestamp kStartTime = clock_.CurrentTime();
// No packet sent.
EXPECT_FALSE(pacer_->FirstSentPacketTime().has_value());
for (size_t i = 0; i < kPacketToSend; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, kSsrc, sequence_number++,
clock_.TimeInMilliseconds(), kSizeBytes);
pacer_->ProcessPackets();
clock_.AdvanceTime(TimeUntilNextProcess());
}
EXPECT_EQ(kStartTime, pacer_->FirstSentPacketTime());
}
TEST_F(PacingControllerTest, QueuePacket) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
queued_packet_timestamp, 250);
EXPECT_EQ(packets_to_send + 1, pacer_->QueueSizePackets());
pacer_->ProcessPackets();
EXPECT_CALL(callback_, SendPadding).Times(0);
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(1u, pacer_->QueueSizePackets());
EXPECT_CALL(callback_, SendPacket(ssrc, sequence_number++,
queued_packet_timestamp, false, false))
.Times(1);
pacer_->ProcessPackets();
sequence_number++;
EXPECT_EQ(0u, pacer_->QueueSizePackets());
// We can send packets_to_send -1 packets of size 250 during the current
// interval since one packet has already been sent.
for (size_t i = 0; i < packets_to_send - 1; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
EXPECT_EQ(packets_to_send, pacer_->QueueSizePackets());
pacer_->ProcessPackets();
EXPECT_EQ(1u, pacer_->QueueSizePackets());
}
TEST_F(PacingControllerTest, PaceQueuedPackets) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
pacer_->QueueSizePackets());
pacer_->ProcessPackets();
EXPECT_EQ(packets_to_send_per_interval * 10, pacer_->QueueSizePackets());
EXPECT_CALL(callback_, SendPadding).Times(0);
for (int k = 0; k < 10; ++k) {
clock_.AdvanceTime(TimeUntilNextProcess());
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false))
.Times(packets_to_send_per_interval);
pacer_->ProcessPackets();
}
EXPECT_EQ(0u, pacer_->QueueSizePackets());
clock_.AdvanceTime(TimeUntilNextProcess());
EXPECT_EQ(0u, pacer_->QueueSizePackets());
pacer_->ProcessPackets();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
clock_.TimeInMilliseconds(), 250);
pacer_->ProcessPackets();
EXPECT_EQ(1u, pacer_->QueueSizePackets());
}
TEST_F(PacingControllerTest, RepeatedRetransmissionsAllowed) {
// Send one packet, then two retransmissions of that packet.
for (size_t i = 0; i < 3; i++) {
constexpr uint32_t ssrc = 333;
constexpr uint16_t sequence_number = 444;
constexpr size_t bytes = 250;
bool is_retransmission = (i != 0); // Original followed by retransmissions.
SendAndExpectPacket(
is_retransmission ? RtpPacketToSend::Type::kRetransmission
: RtpPacketToSend::Type::kVideo,
ssrc, sequence_number, clock_.TimeInMilliseconds(), bytes);
clock_.AdvanceTimeMilliseconds(5);
}
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest,
CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
clock_.TimeInMilliseconds(), 250);
// Expect packet on second ssrc to be queued and sent as well.
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc + 1, sequence_number,
clock_.TimeInMilliseconds(), 250);
clock_.AdvanceTimeMilliseconds(1000);
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, Padding) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
// No padding is expected since we have sent too much already.
EXPECT_CALL(callback_, SendPadding).Times(0);
pacer_->ProcessPackets();
EXPECT_EQ(0u, pacer_->QueueSizePackets());
// 5 milliseconds later should not send padding since we filled the buffers
// initially.
EXPECT_CALL(callback_, SendPadding(250)).Times(0);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
// 5 milliseconds later we have enough budget to send some padding.
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, NoPaddingBeforeNormalPacket) {
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
EXPECT_CALL(callback_, SendPadding).Times(0);
pacer_->ProcessPackets();
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
clock_.AdvanceTime(TimeUntilNextProcess());
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
capture_time_ms, 250);
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, VerifyPaddingUpToBitrate) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const int kTimeStep = 5;
const int64_t kBitrateWindow = 100;
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
int64_t start_time = clock_.TimeInMilliseconds();
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
capture_time_ms, 250);
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
pacer_->ProcessPackets();
clock_.AdvanceTimeMilliseconds(kTimeStep);
}
}
TEST_F(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const int kTimeStep = 5;
const int64_t kBitrateWindow = 10000;
PacingControllerPadding callback;
pacer_ =
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
pacer_->SetProbingEnabled(false);
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
int64_t start_time = clock_.TimeInMilliseconds();
size_t media_bytes = 0;
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
int rand_value = rand(); // NOLINT (rand_r instead of rand)
size_t media_payload = rand_value % 100 + 200; // [200, 300] bytes.
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
capture_time_ms, media_payload);
media_bytes += media_payload;
clock_.AdvanceTimeMilliseconds(kTimeStep);
pacer_->ProcessPackets();
}
EXPECT_NEAR(kTargetRate.kbps(),
static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
kBitrateWindow),
1);
}
TEST_F(PacingControllerTest, Priority) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
int64_t capture_time_ms_low_priority = 1234567;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kRetransmission, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250);
}
pacer_->ProcessPackets();
EXPECT_EQ(0u, pacer_->QueueSizePackets());
// Expect normal and low priority to be queued and high to pass through.
Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++,
capture_time_ms_low_priority, 250);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
capture_time_ms, 250);
}
Send(RtpPacketToSend::Type::kAudio, ssrc, sequence_number++, capture_time_ms,
250);
// Expect all high and normal priority to be sent out first.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
.Times(packets_to_send_per_interval + 1);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
EXPECT_EQ(1u, pacer_->QueueSizePackets());
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
capture_time_ms_low_priority, _, _))
.Times(1);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, RetransmissionPriority) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 45678;
int64_t capture_time_ms_retransmission = 56789;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
pacer_->ProcessPackets();
EXPECT_EQ(0u, pacer_->QueueSizePackets());
// Alternate retransmissions and normal packets.
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
capture_time_ms, 250);
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
capture_time_ms_retransmission, 250);
}
EXPECT_EQ(2 * packets_to_send_per_interval, pacer_->QueueSizePackets());
// Expect all retransmissions to be sent out first despite having a later
// capture time.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0);
EXPECT_CALL(callback_,
SendPacket(ssrc, _, capture_time_ms_retransmission, true, _))
.Times(packets_to_send_per_interval);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets());
// Expect the remaining (non-retransmission) packets to be sent.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _))
.Times(packets_to_send_per_interval);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
EXPECT_EQ(0u, pacer_->QueueSizePackets());
}
TEST_F(PacingControllerTest, HighPrioDoesntAffectBudget) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
// As high prio packets doesn't affect the budget, we should be able to send
// a high number of them at once.
for (int i = 0; i < 25; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kAudio, ssrc, sequence_number++,
capture_time_ms, 250);
}
pacer_->ProcessPackets();
// Low prio packets does affect the budget.
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number, capture_time_ms,
250);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
EXPECT_EQ(1u, pacer_->QueueSizePackets());
EXPECT_CALL(callback_,
SendPacket(ssrc, sequence_number++, capture_time_ms, false, _))
.Times(1);
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
EXPECT_EQ(0u, pacer_->QueueSizePackets());
}
TEST_F(PacingControllerTest, SendsOnlyPaddingWhenCongested) {
uint32_t ssrc = 202020;
uint16_t sequence_number = 1000;
int kPacketSize = 250;
int kCongestionWindow = kPacketSize * 10;
pacer_->UpdateOutstandingData(DataSize::Zero());
pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow));
int sent_data = 0;
while (sent_data < kCongestionWindow) {
sent_data += kPacketSize;
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, SendPacket).Times(0);
EXPECT_CALL(callback_, SendPadding).Times(0);
size_t blocked_packets = 0;
int64_t expected_time_until_padding = 500;
while (expected_time_until_padding > 5) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
blocked_packets++;
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
expected_time_until_padding -= 5;
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
EXPECT_EQ(blocked_packets, pacer_->QueueSizePackets());
}
TEST_F(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) {
uint32_t ssrc = 202020;
uint16_t seq_num = 1000;
int size = 1000;
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
EXPECT_CALL(callback_, SendPadding).Times(0);
// The pacing rate is low enough that the budget should not allow two packets
// to be sent in a row.
pacer_->SetPacingRates(DataRate::bps(400 * 8 * 1000 / 5), DataRate::Zero());
// The congestion window is small enough to only let one packet through.
pacer_->SetCongestionWindow(DataSize::bytes(800));
pacer_->UpdateOutstandingData(DataSize::Zero());
// Not yet budget limited or congested, packet is sent.
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
EXPECT_CALL(callback_, SendPacket).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
// Packet blocked due to congestion.
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
EXPECT_CALL(callback_, SendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
// Packet blocked due to congestion.
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
EXPECT_CALL(callback_, SendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
pacer_->UpdateOutstandingData(DataSize::Zero());
// Congestion removed and budget has recovered, packet is sent.
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
EXPECT_CALL(callback_, SendPacket).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
pacer_->UpdateOutstandingData(DataSize::Zero());
// Should be blocked due to budget limitation as congestion has be removed.
Send(RtpPacketToSend::Type::kVideo, ssrc, seq_num++, now_ms(), size);
EXPECT_CALL(callback_, SendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, ResumesSendingWhenCongestionEnds) {
uint32_t ssrc = 202020;
uint16_t sequence_number = 1000;
int64_t kPacketSize = 250;
int64_t kCongestionCount = 10;
int64_t kCongestionWindow = kPacketSize * kCongestionCount;
int64_t kCongestionTimeMs = 1000;
pacer_->UpdateOutstandingData(DataSize::Zero());
pacer_->SetCongestionWindow(DataSize::bytes(kCongestionWindow));
int sent_data = 0;
while (sent_data < kCongestionWindow) {
sent_data += kPacketSize;
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, SendPacket).Times(0);
int unacked_packets = 0;
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
unacked_packets++;
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
// First mark half of the congested packets as cleared and make sure that just
// as many are sent
int ack_count = kCongestionCount / 2;
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)).Times(ack_count);
pacer_->UpdateOutstandingData(
DataSize::bytes(kCongestionWindow - kPacketSize * ack_count));
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
}
unacked_packets -= ack_count;
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Second make sure all packets are sent if sent packets are continuously
// marked as acked.
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _))
.Times(unacked_packets);
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
pacer_->UpdateOutstandingData(DataSize::Zero());
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
}
}
TEST_F(PacingControllerTest, Pause) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint32_t ssrc_high_priority = 12347;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = clock_.TimeInMilliseconds();
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250);
}
pacer_->ProcessPackets();
pacer_->Pause();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++,
capture_time_ms, 250);
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
capture_time_ms, 250);
Send(RtpPacketToSend::Type::kAudio, ssrc_high_priority, sequence_number++,
capture_time_ms, 250);
}
clock_.AdvanceTimeMilliseconds(10000);
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
Send(RtpPacketToSend::Type::kVideo, ssrc_low_priority, sequence_number++,
second_capture_time_ms, 250);
Send(RtpPacketToSend::Type::kRetransmission, ssrc, sequence_number++,
second_capture_time_ms, 250);
Send(RtpPacketToSend::Type::kAudio, ssrc_high_priority, sequence_number++,
second_capture_time_ms, 250);
}
// Expect everything to be queued.
EXPECT_EQ(TimeDelta::ms(second_capture_time_ms - capture_time_ms),
pacer_->OldestPacketWaitTime());
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
pacer_->ProcessPackets();
int64_t expected_time_until_send = 500;
EXPECT_CALL(callback_, SendPadding).Times(0);
while (expected_time_until_send >= 5) {
pacer_->ProcessPackets();
clock_.AdvanceTimeMilliseconds(5);
expected_time_until_send -= 5;
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
clock_.AdvanceTimeMilliseconds(5);
pacer_->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Expect high prio packets to come out first followed by normal
// prio packets and low prio packets (all in capture order).
{
::testing::InSequence sequence;
EXPECT_CALL(callback_,
SendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
.Times(packets_to_send_per_interval);
EXPECT_CALL(callback_,
SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _))
.Times(packets_to_send_per_interval);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
.Times(1);
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _))
.Times(1);
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_,
SendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
.Times(1);
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
second_capture_time_ms, _, _))
.Times(1);
}
}
pacer_->Resume();
// The pacer was resumed directly after the previous process call finished. It
// will therefore wait 5 ms until next process.
clock_.AdvanceTime(TimeUntilNextProcess());
for (size_t i = 0; i < 4; i++) {
pacer_->ProcessPackets();
clock_.AdvanceTime(TimeUntilNextProcess());
}
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
}
TEST_F(PacingControllerTest, ExpectedQueueTimeMs) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kNumPackets = 60;
const size_t kPacketSize = 1200;
const int32_t kMaxBitrate = kPaceMultiplier * 30000;
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier),
DataRate::Zero());
for (size_t i = 0; i < kNumPackets; ++i) {
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
}
// Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
TimeDelta queue_time =
TimeDelta::ms(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
EXPECT_EQ(queue_time, pacer_->ExpectedQueueTime());
const Timestamp time_start = clock_.CurrentTime();
while (pacer_->QueueSizePackets() > 0) {
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
}
TimeDelta duration = clock_.CurrentTime() - time_start;
EXPECT_EQ(TimeDelta::Zero(), pacer_->ExpectedQueueTime());
// Allow for aliasing, duration should be within one pack of max time limit.
const TimeDelta deviation =
duration - PacingController::kMaxExpectedQueueLength;
EXPECT_LT(deviation.Abs(),
TimeDelta::ms(1000 * kPacketSize * 8 / kMaxBitrate));
}
TEST_F(PacingControllerTest, QueueTimeGrowsOverTime) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
pacer_->SetPacingRates(DataRate::bps(30000 * kPaceMultiplier),
DataRate::Zero());
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number,
clock_.TimeInMilliseconds(), 1200);
clock_.AdvanceTimeMilliseconds(500);
EXPECT_EQ(TimeDelta::ms(500), pacer_->OldestPacketWaitTime());
pacer_->ProcessPackets();
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
}
TEST_F(PacingControllerTest, ProbingWithInsertedPackets) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
PacingControllerProbing packet_sender;
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
nullptr);
pacer_->CreateProbeCluster(kFirstClusterRate,
/*cluster_id=*/0);
pacer_->CreateProbeCluster(kSecondClusterRate,
/*cluster_id=*/1);
pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier),
DataRate::Zero());
for (int i = 0; i < 10; ++i) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
}
int64_t start = clock_.TimeInMilliseconds();
while (packet_sender.packets_sent() < 5) {
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
}
int packets_sent = packet_sender.packets_sent();
// Validate first cluster bitrate. Note that we have to account for number
// of intervals and hence (packets_sent - 1) on the first cluster.
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
(clock_.TimeInMilliseconds() - start),
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
EXPECT_EQ(0, packet_sender.padding_sent());
clock_.AdvanceTime(TimeUntilNextProcess());
start = clock_.TimeInMilliseconds();
while (packet_sender.packets_sent() < 10) {
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
}
packets_sent = packet_sender.packets_sent() - packets_sent;
// Validate second cluster bitrate.
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
(clock_.TimeInMilliseconds() - start),
kSecondClusterRate.bps(), kProbingErrorMargin.bps());
}
TEST_F(PacingControllerTest, ProbingWithPaddingSupport) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
PacingControllerProbing packet_sender;
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
nullptr);
pacer_->CreateProbeCluster(kFirstClusterRate,
/*cluster_id=*/0);
pacer_->SetPacingRates(DataRate::bps(kInitialBitrateBps * kPaceMultiplier),
DataRate::Zero());
for (int i = 0; i < 3; ++i) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
}
int64_t start = clock_.TimeInMilliseconds();
int process_count = 0;
while (process_count < 5) {
clock_.AdvanceTime(TimeUntilNextProcess());
pacer_->ProcessPackets();
++process_count;
}
int packets_sent = packet_sender.packets_sent();
int padding_sent = packet_sender.padding_sent();
EXPECT_GT(packets_sent, 0);
EXPECT_GT(padding_sent, 0);
// Note that the number of intervals here for kPacketSize is
// packets_sent due to padding in the same cluster.
EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
(clock_.TimeInMilliseconds() - start),
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
}
TEST_F(PacingControllerTest, PaddingOveruse) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
pacer_->ProcessPackets();
pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier),
DataRate::Zero());
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
pacer_->ProcessPackets();
// Add 30kbit padding. When increasing budget, media budget will increase from
// negative (overuse) while padding budget will increase from 0.
clock_.AdvanceTimeMilliseconds(5);
pacer_->SetPacingRates(DataRate::bps(60000 * kPaceMultiplier),
DataRate::bps(30000));
SendAndExpectPacket(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
EXPECT_LT(TimeDelta::ms(5), pacer_->ExpectedQueueTime());
// Don't send padding if queue is non-empty, even if padding budget > 0.
EXPECT_CALL(callback_, SendPadding).Times(0);
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, ProbeClusterId) {
MockPacketSender callback;
pacer_ =
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
Init();
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
pacer_->SetProbingEnabled(true);
for (int i = 0; i < 10; ++i) {
Send(RtpPacketToSend::Type::kVideo, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize);
}
// First probing cluster.
EXPECT_CALL(callback,
SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0)))
.Times(5);
for (int i = 0; i < 5; ++i) {
clock_.AdvanceTimeMilliseconds(20);
pacer_->ProcessPackets();
}
// Second probing cluster.
EXPECT_CALL(callback,
SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1)))
.Times(5);
for (int i = 0; i < 5; ++i) {
clock_.AdvanceTimeMilliseconds(20);
pacer_->ProcessPackets();
}
// Needed for the Field comparer below.
const int kNotAProbe = PacedPacketInfo::kNotAProbe;
// No more probing packets.
EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
padding_packets.emplace_back(
BuildPacket(RtpPacketToSend::Type::kPadding, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), padding_size.bytes()));
return padding_packets;
});
EXPECT_CALL(
callback,
SendRtpPacket(_, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe)))
.Times(1);
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, OwnedPacketPrioritizedOnType) {
MockPacketSender callback;
pacer_ =
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
Init();
// Insert a packet of each type, from low to high priority. Since priority
// is weighted higher than insert order, these should come out of the pacer
// in backwards order with the exception of FEC and Video.
for (RtpPacketToSend::Type type :
{RtpPacketToSend::Type::kPadding,
RtpPacketToSend::Type::kForwardErrorCorrection,
RtpPacketToSend::Type::kVideo, RtpPacketToSend::Type::kRetransmission,
RtpPacketToSend::Type::kAudio}) {
pacer_->EnqueuePacket(BuildRtpPacket(type));
}
::testing::InSequence seq;
EXPECT_CALL(
callback,
SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kAudioSsrc)), _));
EXPECT_CALL(callback,
SendRtpPacket(
Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
// FEC and video actually have the same priority, so will come out in
// insertion order.
EXPECT_CALL(callback,
SendRtpPacket(
Pointee(Property(&RtpPacketToSend::Ssrc, kFlexFecSsrc)), _));
EXPECT_CALL(
callback,
SendRtpPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoSsrc)), _));
EXPECT_CALL(callback,
SendRtpPacket(
Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
clock_.AdvanceTimeMilliseconds(200);
pacer_->ProcessPackets();
}
TEST_F(PacingControllerTest, SmallFirstProbePacket) {
ScopedFieldTrials trial("WebRTC-Pacer-SmallFirstProbePacket/Enabled/");
MockPacketSender callback;
pacer_ =
std::make_unique<PacingController>(&clock_, &callback, nullptr, nullptr);
pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
// Add high prio media.
pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketToSend::Type::kAudio));
// Expect small padding packet to be requested.
EXPECT_CALL(callback, GeneratePadding(DataSize::bytes(1)))
.WillOnce([&](DataSize padding_size) {
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
padding_packets.emplace_back(
BuildPacket(RtpPacketToSend::Type::kPadding, kAudioSsrc, 1,
clock_.TimeInMilliseconds(), 1));
return padding_packets;
});
size_t packets_sent = 0;
bool media_seen = false;
EXPECT_CALL(callback, SendRtpPacket)
.Times(::testing::AnyNumber())
.WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) {
if (packets_sent == 0) {
EXPECT_EQ(packet->packet_type(), RtpPacketToSend::Type::kPadding);
} else {
if (packet->packet_type() == RtpPacketToSend::Type::kAudio) {
media_seen = true;
}
}
packets_sent++;
});
while (!media_seen) {
pacer_->ProcessPackets();
clock_.AdvanceTimeMilliseconds(5);
}
}
} // namespace test
} // namespace webrtc