Files
platform-external-webrtc/rtc_base/ipaddress.cc
Daniel Lazarenko 2870b0a57e Expose a link-local network interfaces enumeration option
The bug 8432 is caused by trying to connect through a
"link-local" interface (IP address 169.254.0.x/16),
which is listed among the iPhone network interfaces.
The bug is not happening if the link-local network interfaces
are skipped in the ICE candidate gethering process.

To control this behaviour an option - disable_link_local_networks -
is added inside the RTCConfiguration.
It is used to set the new BasicPortAllocatorSession flag -
PORTALLOCATOR_DISABLE_LINK_LOCAL_NETWORKS.
The port allocator flag is added if the configuration option is set.

IPIsLinkLocal IPAddress function and its friends (IPIsLoopback, IPIsPrivate)
are refactored to work on both IPv4 and IPv6.
Unit test IPIsLinkLocal.

Bonus: fix a bug in IPIsLinkLocalV6:
take into account just 10 network mask bits instead of 16.

Bug: webrtc:8432
Change-Id: Ibe8f677a36098057b7fcad5c798380727b23359b
Reviewed-on: https://webrtc-review.googlesource.com/36380
Reviewed-by: Taylor Brandstetter <deadbeef@webrtc.org>
Reviewed-by: Peter Thatcher <pthatcher@webrtc.org>
Reviewed-by: Kári Helgason <kthelgason@webrtc.org>
Reviewed-by: Zhi Huang <zhihuang@webrtc.org>
Commit-Queue: Taylor Brandstetter <deadbeef@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21922}
2018-02-06 19:12:04 +00:00

566 lines
15 KiB
C++

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_POSIX)
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#ifdef OPENBSD
#include <netinet/in_systm.h>
#endif
#ifndef __native_client__
#include <netinet/ip.h>
#endif
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>
#endif
#include <stdio.h>
#include "rtc_base/byteorder.h"
#include "rtc_base/checks.h"
#include "rtc_base/ipaddress.h"
#include "rtc_base/logging.h"
#include "rtc_base/nethelpers.h"
#include "rtc_base/stringutils.h"
#if defined(WEBRTC_WIN)
#include "rtc_base/win32.h"
#endif // WEBRTC_WIN
namespace rtc {
// Prefixes used for categorizing IPv6 addresses.
static const in6_addr kV4MappedPrefix = {{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0xFF, 0xFF, 0}}};
static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}};
static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}};
static const in6_addr kV4CompatibilityPrefix = {{{0}}};
static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}};
static const in6_addr kPrivateNetworkPrefix = {{{0xFD}}};
static bool IPIsHelper(const IPAddress& ip,
const in6_addr& tomatch, int length);
static in_addr ExtractMappedAddress(const in6_addr& addr);
uint32_t IPAddress::v4AddressAsHostOrderInteger() const {
if (family_ == AF_INET) {
return NetworkToHost32(u_.ip4.s_addr);
} else {
return 0;
}
}
bool IPAddress::IsNil() const {
return IPIsUnspec(*this);
}
size_t IPAddress::Size() const {
switch (family_) {
case AF_INET:
return sizeof(in_addr);
case AF_INET6:
return sizeof(in6_addr);
}
return 0;
}
bool IPAddress::operator==(const IPAddress &other) const {
if (family_ != other.family_) {
return false;
}
if (family_ == AF_INET) {
return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0;
}
if (family_ == AF_INET6) {
return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0;
}
return family_ == AF_UNSPEC;
}
bool IPAddress::operator!=(const IPAddress &other) const {
return !((*this) == other);
}
bool IPAddress::operator >(const IPAddress &other) const {
return (*this) != other && !((*this) < other);
}
bool IPAddress::operator <(const IPAddress &other) const {
// IPv4 is 'less than' IPv6
if (family_ != other.family_) {
if (family_ == AF_UNSPEC) {
return true;
}
if (family_ == AF_INET && other.family_ == AF_INET6) {
return true;
}
return false;
}
// Comparing addresses of the same family.
switch (family_) {
case AF_INET: {
return NetworkToHost32(u_.ip4.s_addr) <
NetworkToHost32(other.u_.ip4.s_addr);
}
case AF_INET6: {
return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0;
}
}
// Catches AF_UNSPEC and invalid addresses.
return false;
}
std::ostream& operator<<(std::ostream& os, const IPAddress& ip) {
os << ip.ToString();
return os;
}
in6_addr IPAddress::ipv6_address() const {
return u_.ip6;
}
in_addr IPAddress::ipv4_address() const {
return u_.ip4;
}
std::string IPAddress::ToString() const {
if (family_ != AF_INET && family_ != AF_INET6) {
return std::string();
}
char buf[INET6_ADDRSTRLEN] = {0};
const void* src = &u_.ip4;
if (family_ == AF_INET6) {
src = &u_.ip6;
}
if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) {
return std::string();
}
return std::string(buf);
}
std::string IPAddress::ToSensitiveString() const {
#if !defined(NDEBUG)
// Return non-stripped in debug.
return ToString();
#else
switch (family_) {
case AF_INET: {
std::string address = ToString();
size_t find_pos = address.rfind('.');
if (find_pos == std::string::npos)
return std::string();
address.resize(find_pos);
address += ".x";
return address;
}
case AF_INET6: {
std::string result;
result.resize(INET6_ADDRSTRLEN);
in6_addr addr = ipv6_address();
size_t len =
rtc::sprintfn(&(result[0]), result.size(), "%x:%x:%x:x:x:x:x:x",
(addr.s6_addr[0] << 8) + addr.s6_addr[1],
(addr.s6_addr[2] << 8) + addr.s6_addr[3],
(addr.s6_addr[4] << 8) + addr.s6_addr[5]);
result.resize(len);
return result;
}
}
return std::string();
#endif
}
IPAddress IPAddress::Normalized() const {
if (family_ != AF_INET6) {
return *this;
}
if (!IPIsV4Mapped(*this)) {
return *this;
}
in_addr addr = ExtractMappedAddress(u_.ip6);
return IPAddress(addr);
}
IPAddress IPAddress::AsIPv6Address() const {
if (family_ != AF_INET) {
return *this;
}
in6_addr v6addr = kV4MappedPrefix;
::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr));
return IPAddress(v6addr);
}
bool InterfaceAddress::operator==(const InterfaceAddress &other) const {
return ipv6_flags_ == other.ipv6_flags() &&
static_cast<const IPAddress&>(*this) == other;
}
bool InterfaceAddress::operator!=(const InterfaceAddress &other) const {
return !((*this) == other);
}
const InterfaceAddress& InterfaceAddress::operator=(
const InterfaceAddress& other) {
ipv6_flags_ = other.ipv6_flags_;
static_cast<IPAddress&>(*this) = other;
return *this;
}
std::ostream& operator<<(std::ostream& os, const InterfaceAddress& ip) {
os << static_cast<const IPAddress&>(ip);
if (ip.family() == AF_INET6)
os << "|flags:0x" << std::hex << ip.ipv6_flags();
return os;
}
static bool IPIsPrivateNetworkV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return ((ip_in_host_order >> 24) == 10) ||
((ip_in_host_order >> 20) == ((172 << 4) | 1)) ||
((ip_in_host_order >> 16) == ((192 << 8) | 168));
}
static bool IPIsPrivateNetworkV6(const IPAddress& ip) {
return IPIsHelper(ip, kPrivateNetworkPrefix, 8);
}
bool IPIsPrivateNetwork(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IPIsPrivateNetworkV4(ip);
}
case AF_INET6: {
return IPIsPrivateNetworkV6(ip);
}
}
return false;
}
in_addr ExtractMappedAddress(const in6_addr& in6) {
in_addr ipv4;
::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr));
return ipv4;
}
bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) {
if (!info || !info->ai_addr) {
return false;
}
if (info->ai_addr->sa_family == AF_INET) {
sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr);
*out = IPAddress(addr->sin_addr);
return true;
} else if (info->ai_addr->sa_family == AF_INET6) {
sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr);
*out = IPAddress(addr->sin6_addr);
return true;
}
return false;
}
bool IPFromString(const std::string& str, IPAddress* out) {
if (!out) {
return false;
}
in_addr addr;
if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) {
in6_addr addr6;
if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) {
*out = IPAddress();
return false;
}
*out = IPAddress(addr6);
} else {
*out = IPAddress(addr);
}
return true;
}
bool IPFromString(const std::string& str, int flags,
InterfaceAddress* out) {
IPAddress ip;
if (!IPFromString(str, &ip)) {
return false;
}
*out = InterfaceAddress(ip, flags);
return true;
}
bool IPIsAny(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET:
return ip == IPAddress(INADDR_ANY);
case AF_INET6:
return ip == IPAddress(in6addr_any) || ip == IPAddress(kV4MappedPrefix);
case AF_UNSPEC:
return false;
}
return false;
}
static bool IPIsLoopbackV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return ((ip_in_host_order >> 24) == 127);
}
static bool IPIsLoopbackV6(const IPAddress& ip) {
return ip == IPAddress(in6addr_loopback);
}
bool IPIsLoopback(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IPIsLoopbackV4(ip);
}
case AF_INET6: {
return IPIsLoopbackV6(ip);
}
}
return false;
}
bool IPIsPrivate(const IPAddress& ip) {
return IPIsLinkLocal(ip) || IPIsLoopback(ip) || IPIsPrivateNetwork(ip);
}
bool IPIsUnspec(const IPAddress& ip) {
return ip.family() == AF_UNSPEC;
}
size_t HashIP(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return ip.ipv4_address().s_addr;
}
case AF_INET6: {
in6_addr v6addr = ip.ipv6_address();
const uint32_t* v6_as_ints =
reinterpret_cast<const uint32_t*>(&v6addr.s6_addr);
return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3];
}
}
return 0;
}
IPAddress TruncateIP(const IPAddress& ip, int length) {
if (length < 0) {
return IPAddress();
}
if (ip.family() == AF_INET) {
if (length > 31) {
return ip;
}
if (length == 0) {
return IPAddress(INADDR_ANY);
}
int mask = (0xFFFFFFFF << (32 - length));
uint32_t host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr);
in_addr masked;
masked.s_addr = HostToNetwork32(host_order_ip & mask);
return IPAddress(masked);
} else if (ip.family() == AF_INET6) {
if (length > 127) {
return ip;
}
if (length == 0) {
return IPAddress(in6addr_any);
}
in6_addr v6addr = ip.ipv6_address();
int position = length / 32;
int inner_length = 32 - (length - (position * 32));
// Note: 64bit mask constant needed to allow possible 32-bit left shift.
uint32_t inner_mask = 0xFFFFFFFFLL << inner_length;
uint32_t* v6_as_ints = reinterpret_cast<uint32_t*>(&v6addr.s6_addr);
for (int i = 0; i < 4; ++i) {
if (i == position) {
uint32_t host_order_inner = NetworkToHost32(v6_as_ints[i]);
v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask);
} else if (i > position) {
v6_as_ints[i] = 0;
}
}
return IPAddress(v6addr);
}
return IPAddress();
}
int CountIPMaskBits(IPAddress mask) {
uint32_t word_to_count = 0;
int bits = 0;
switch (mask.family()) {
case AF_INET: {
word_to_count = NetworkToHost32(mask.ipv4_address().s_addr);
break;
}
case AF_INET6: {
in6_addr v6addr = mask.ipv6_address();
const uint32_t* v6_as_ints =
reinterpret_cast<const uint32_t*>(&v6addr.s6_addr);
int i = 0;
for (; i < 4; ++i) {
if (v6_as_ints[i] != 0xFFFFFFFF) {
break;
}
}
if (i < 4) {
word_to_count = NetworkToHost32(v6_as_ints[i]);
}
bits = (i * 32);
break;
}
default: {
return 0;
}
}
if (word_to_count == 0) {
return bits;
}
// Public domain bit-twiddling hack from:
// http://graphics.stanford.edu/~seander/bithacks.html
// Counts the trailing 0s in the word.
unsigned int zeroes = 32;
// This could also be written word_to_count &= -word_to_count, but
// MSVC emits warning C4146 when negating an unsigned number.
word_to_count &= ~word_to_count + 1; // Isolate lowest set bit.
if (word_to_count) zeroes--;
if (word_to_count & 0x0000FFFF) zeroes -= 16;
if (word_to_count & 0x00FF00FF) zeroes -= 8;
if (word_to_count & 0x0F0F0F0F) zeroes -= 4;
if (word_to_count & 0x33333333) zeroes -= 2;
if (word_to_count & 0x55555555) zeroes -= 1;
return bits + (32 - zeroes);
}
bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) {
// Helper method for checking IP prefix matches (but only on whole byte
// lengths). Length is in bits.
in6_addr addr = ip.ipv6_address();
return ::memcmp(&addr, &tomatch, (length >> 3)) == 0;
}
bool IPIs6Bone(const IPAddress& ip) {
return IPIsHelper(ip, k6BonePrefix, 16);
}
bool IPIs6To4(const IPAddress& ip) {
return IPIsHelper(ip, k6To4Prefix, 16);
}
static bool IPIsLinkLocalV4(const IPAddress& ip) {
uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger();
return ((ip_in_host_order >> 16) == ((169 << 8) | 254));
}
static bool IPIsLinkLocalV6(const IPAddress& ip) {
// Can't use the helper because the prefix is 10 bits.
in6_addr addr = ip.ipv6_address();
return (addr.s6_addr[0] == 0xFE) && ((addr.s6_addr[1] & 0xC0) == 0x80);
}
bool IPIsLinkLocal(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IPIsLinkLocalV4(ip);
}
case AF_INET6: {
return IPIsLinkLocalV6(ip);
}
}
return false;
}
// According to http://www.ietf.org/rfc/rfc2373.txt, Appendix A, page 19. An
// address which contains MAC will have its 11th and 12th bytes as FF:FE as well
// as the U/L bit as 1.
bool IPIsMacBased(const IPAddress& ip) {
in6_addr addr = ip.ipv6_address();
return ((addr.s6_addr[8] & 0x02) && addr.s6_addr[11] == 0xFF &&
addr.s6_addr[12] == 0xFE);
}
bool IPIsSiteLocal(const IPAddress& ip) {
// Can't use the helper because the prefix is 10 bits.
in6_addr addr = ip.ipv6_address();
return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0;
}
bool IPIsULA(const IPAddress& ip) {
// Can't use the helper because the prefix is 7 bits.
in6_addr addr = ip.ipv6_address();
return (addr.s6_addr[0] & 0xFE) == 0xFC;
}
bool IPIsTeredo(const IPAddress& ip) {
return IPIsHelper(ip, kTeredoPrefix, 32);
}
bool IPIsV4Compatibility(const IPAddress& ip) {
return IPIsHelper(ip, kV4CompatibilityPrefix, 96);
}
bool IPIsV4Mapped(const IPAddress& ip) {
return IPIsHelper(ip, kV4MappedPrefix, 96);
}
int IPAddressPrecedence(const IPAddress& ip) {
// Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo.
if (ip.family() == AF_INET) {
return 30;
} else if (ip.family() == AF_INET6) {
if (IPIsLoopback(ip)) {
return 60;
} else if (IPIsULA(ip)) {
return 50;
} else if (IPIsV4Mapped(ip)) {
return 30;
} else if (IPIs6To4(ip)) {
return 20;
} else if (IPIsTeredo(ip)) {
return 10;
} else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) {
return 1;
} else {
// A 'normal' IPv6 address.
return 40;
}
}
return 0;
}
IPAddress GetLoopbackIP(int family) {
if (family == AF_INET) {
return rtc::IPAddress(INADDR_LOOPBACK);
}
if (family == AF_INET6) {
return rtc::IPAddress(in6addr_loopback);
}
return rtc::IPAddress();
}
IPAddress GetAnyIP(int family) {
if (family == AF_INET) {
return rtc::IPAddress(INADDR_ANY);
}
if (family == AF_INET6) {
return rtc::IPAddress(in6addr_any);
}
return rtc::IPAddress();
}
} // namespace rtc