Files
platform-external-webrtc/webrtc/modules/video_coding/codecs/vp9/vp9_impl.cc
ivica 7f6a6fc0b2 Enabling spatial layers in VP9Impl. Filter layers in the loopback test.
Handling the case when encoder drops only the higher layer.
Added options to screenshare loopback test to discard high temporal or spatial layers (to view the lower layers).

Review URL: https://codereview.webrtc.org/1287643002

Cr-Commit-Position: refs/heads/master@{#9883}
2015-09-08 09:40:36 +00:00

790 lines
27 KiB
C++

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/video_coding/codecs/vp9/vp9_impl.h"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <vector>
#include "vpx/vpx_encoder.h"
#include "vpx/vpx_decoder.h"
#include "vpx/vp8cx.h"
#include "vpx/vp8dx.h"
#include "webrtc/base/bind.h"
#include "webrtc/base/checks.h"
#include "webrtc/common.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
namespace {
// VP9DecoderImpl::ReturnFrame helper function used with WrappedI420Buffer.
static void WrappedI420BufferNoLongerUsedCb(
webrtc::Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer) {
img_buffer->Release();
}
} // anonymous namespace
namespace webrtc {
// Only positive speeds, range for real-time coding currently is: 5 - 8.
// Lower means slower/better quality, higher means fastest/lower quality.
int GetCpuSpeed(int width, int height) {
// For smaller resolutions, use lower speed setting (get some coding gain at
// the cost of increased encoding complexity).
if (width * height <= 352 * 288)
return 5;
else
return 7;
}
VP9Encoder* VP9Encoder::Create() {
return new VP9EncoderImpl();
}
void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt,
void* user_data) {
VP9EncoderImpl* enc = (VP9EncoderImpl*)(user_data);
enc->GetEncodedLayerFrame(pkt);
}
VP9EncoderImpl::VP9EncoderImpl()
: encoded_image_(),
encoded_complete_callback_(NULL),
inited_(false),
timestamp_(0),
picture_id_(0),
cpu_speed_(3),
rc_max_intra_target_(0),
encoder_(NULL),
config_(NULL),
raw_(NULL),
input_image_(NULL),
tl0_pic_idx_(0),
gof_idx_(0),
num_temporal_layers_(0),
num_spatial_layers_(0) {
memset(&codec_, 0, sizeof(codec_));
uint32_t seed = static_cast<uint32_t>(TickTime::MillisecondTimestamp());
srand(seed);
}
VP9EncoderImpl::~VP9EncoderImpl() {
Release();
}
int VP9EncoderImpl::Release() {
if (encoded_image_._buffer != NULL) {
delete [] encoded_image_._buffer;
encoded_image_._buffer = NULL;
}
if (encoder_ != NULL) {
if (vpx_codec_destroy(encoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete encoder_;
encoder_ = NULL;
}
if (config_ != NULL) {
delete config_;
config_ = NULL;
}
if (raw_ != NULL) {
vpx_img_free(raw_);
raw_ = NULL;
}
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
bool VP9EncoderImpl::SetSvcRates() {
float rate_ratio[VPX_MAX_LAYERS] = {0};
float total = 0;
uint8_t i = 0;
for (i = 0; i < num_spatial_layers_; ++i) {
if (svc_internal_.svc_params.scaling_factor_num[i] <= 0 ||
svc_internal_.svc_params.scaling_factor_den[i] <= 0) {
return false;
}
rate_ratio[i] = static_cast<float>(
svc_internal_.svc_params.scaling_factor_num[i]) /
svc_internal_.svc_params.scaling_factor_den[i];
total += rate_ratio[i];
}
for (i = 0; i < num_spatial_layers_; ++i) {
config_->ss_target_bitrate[i] = static_cast<unsigned int>(
config_->rc_target_bitrate * rate_ratio[i] / total);
if (num_temporal_layers_ == 1) {
config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 2) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] * 2 / 3;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 3) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] / 2;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->layer_target_bitrate[i * num_temporal_layers_] +
(config_->ss_target_bitrate[i] / 4);
config_->layer_target_bitrate[i * num_temporal_layers_ + 2] =
config_->ss_target_bitrate[i];
} else {
return false;
}
}
// For now, temporal layers only supported when having one spatial layer.
if (num_spatial_layers_ == 1) {
for (i = 0; i < num_temporal_layers_; ++i) {
config_->ts_target_bitrate[i] = config_->layer_target_bitrate[i];
}
}
return true;
}
int VP9EncoderImpl::SetRates(uint32_t new_bitrate_kbit,
uint32_t new_framerate) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoder_->err) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (new_framerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Update bit rate
if (codec_.maxBitrate > 0 && new_bitrate_kbit > codec_.maxBitrate) {
new_bitrate_kbit = codec_.maxBitrate;
}
config_->rc_target_bitrate = new_bitrate_kbit;
codec_.maxFramerate = new_framerate;
if (!SetSvcRates()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Update encoder context
if (vpx_codec_enc_config_set(encoder_, config_)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::InitEncode(const VideoCodec* inst,
int number_of_cores,
size_t /*max_payload_size*/) {
if (inst == NULL) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width < 1 || inst->height < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->codecSpecific.VP9.numberOfTemporalLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// libvpx currently supports only one or two spatial layers.
if (inst->codecSpecific.VP9.numberOfSpatialLayers > 2) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int retVal = Release();
if (retVal < 0) {
return retVal;
}
if (encoder_ == NULL) {
encoder_ = new vpx_codec_ctx_t;
}
if (config_ == NULL) {
config_ = new vpx_codec_enc_cfg_t;
}
timestamp_ = 0;
if (&codec_ != inst) {
codec_ = *inst;
}
num_spatial_layers_ = inst->codecSpecific.VP9.numberOfSpatialLayers;
num_temporal_layers_ = inst->codecSpecific.VP9.numberOfTemporalLayers;
if (num_temporal_layers_ == 0)
num_temporal_layers_ = 1;
// Random start 16 bits is enough.
picture_id_ = static_cast<uint16_t>(rand()) & 0x7FFF;
// Allocate memory for encoded image
if (encoded_image_._buffer != NULL) {
delete [] encoded_image_._buffer;
}
encoded_image_._size = CalcBufferSize(kI420, codec_.width, codec_.height);
encoded_image_._buffer = new uint8_t[encoded_image_._size];
encoded_image_._completeFrame = true;
// Creating a wrapper to the image - setting image data to NULL. Actual
// pointer will be set in encode. Setting align to 1, as it is meaningless
// (actual memory is not allocated).
raw_ = vpx_img_wrap(NULL, VPX_IMG_FMT_I420, codec_.width, codec_.height,
1, NULL);
// Populate encoder configuration with default values.
if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
config_->g_w = codec_.width;
config_->g_h = codec_.height;
config_->rc_target_bitrate = inst->startBitrate; // in kbit/s
config_->g_error_resilient = 1;
// Setting the time base of the codec.
config_->g_timebase.num = 1;
config_->g_timebase.den = 90000;
config_->g_lag_in_frames = 0; // 0- no frame lagging
config_->g_threads = 1;
// Rate control settings.
config_->rc_dropframe_thresh = inst->codecSpecific.VP9.frameDroppingOn ?
30 : 0;
config_->rc_end_usage = VPX_CBR;
config_->g_pass = VPX_RC_ONE_PASS;
config_->rc_min_quantizer = 2;
config_->rc_max_quantizer = 52;
config_->rc_undershoot_pct = 50;
config_->rc_overshoot_pct = 50;
config_->rc_buf_initial_sz = 500;
config_->rc_buf_optimal_sz = 600;
config_->rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz);
if (inst->codecSpecific.VP9.keyFrameInterval > 0) {
config_->kf_mode = VPX_KF_AUTO;
config_->kf_max_dist = inst->codecSpecific.VP9.keyFrameInterval;
} else {
config_->kf_mode = VPX_KF_DISABLED;
}
// Determine number of threads based on the image size and #cores.
config_->g_threads = NumberOfThreads(config_->g_w,
config_->g_h,
number_of_cores);
cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h);
// TODO(asapersson): Check configuration of temporal switch up and increase
// pattern length.
if (num_temporal_layers_ == 1) {
gof_.SetGofInfoVP9(kTemporalStructureMode1);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING;
config_->ts_number_layers = 1;
config_->ts_rate_decimator[0] = 1;
config_->ts_periodicity = 1;
config_->ts_layer_id[0] = 0;
} else if (num_temporal_layers_ == 2) {
gof_.SetGofInfoVP9(kTemporalStructureMode2);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101;
config_->ts_number_layers = 2;
config_->ts_rate_decimator[0] = 2;
config_->ts_rate_decimator[1] = 1;
config_->ts_periodicity = 2;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 1;
} else if (num_temporal_layers_ == 3) {
gof_.SetGofInfoVP9(kTemporalStructureMode3);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212;
config_->ts_number_layers = 3;
config_->ts_rate_decimator[0] = 4;
config_->ts_rate_decimator[1] = 2;
config_->ts_rate_decimator[2] = 1;
config_->ts_periodicity = 4;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 2;
config_->ts_layer_id[2] = 1;
config_->ts_layer_id[3] = 2;
} else {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
tl0_pic_idx_ = static_cast<uint8_t>(rand());
return InitAndSetControlSettings(inst);
}
int VP9EncoderImpl::NumberOfThreads(int width,
int height,
int number_of_cores) {
// For the current libvpx library, only 1 thread is supported when SVC is
// turned on.
if (num_temporal_layers_ > 1 || num_spatial_layers_ > 1) {
return 1;
}
// Keep the number of encoder threads equal to the possible number of column
// tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS.
if (width * height >= 1280 * 720 && number_of_cores > 4) {
return 4;
} else if (width * height >= 640 * 480 && number_of_cores > 2) {
return 2;
} else {
// 1 thread less than VGA.
return 1;
}
}
int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) {
config_->ss_number_layers = num_spatial_layers_;
int scaling_factor_num = 256;
for (int i = num_spatial_layers_ - 1; i >= 0; --i) {
svc_internal_.svc_params.max_quantizers[i] = config_->rc_max_quantizer;
svc_internal_.svc_params.min_quantizers[i] = config_->rc_min_quantizer;
// 1:2 scaling in each dimension.
svc_internal_.svc_params.scaling_factor_num[i] = scaling_factor_num;
svc_internal_.svc_params.scaling_factor_den[i] = 256;
scaling_factor_num /= 2;
}
if (!SetSvcRates()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (vpx_codec_enc_init(encoder_, vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_);
vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
vpx_codec_control(encoder_, VP9E_SET_AQ_MODE,
inst->codecSpecific.VP9.adaptiveQpMode ? 3 : 0);
vpx_codec_control(
encoder_, VP9E_SET_SVC,
(num_temporal_layers_ > 1 || num_spatial_layers_ > 1) ? 1 : 0);
if (num_temporal_layers_ > 1 || num_spatial_layers_ > 1) {
vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS,
&svc_internal_.svc_params);
}
// Register callback for getting each spatial layer.
vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = {
VP9EncoderImpl::EncoderOutputCodedPacketCallback, (void*)(this)};
vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK, (void*)(&cbp));
// Control function to set the number of column tiles in encoding a frame, in
// log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns.
// The number tile columns will be capped by the encoder based on image size
// (minimum width of tile column is 256 pixels, maximum is 4096).
vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1));
#if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64)
// Note denoiser is still off by default until further testing/optimization,
// i.e., codecSpecific.VP9.denoisingOn == 0.
vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY,
inst->codecSpecific.VP9.denoisingOn ? 1 : 0);
#endif
if (codec_.mode == kScreensharing) {
// Adjust internal parameters to screen content.
vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1);
// Let the encoder skip the encoding of very flat/low content blocks.
vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1);
}
inited_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scale_par.
// Max target size = scale_par * optimal_buffer_size * targetBR[Kbps].
// This value is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / framerate.
// The target in % is as follows:
float scale_par = 0.5;
uint32_t target_pct =
optimal_buffer_size * scale_par * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t min_intra_size = 300;
return (target_pct < min_intra_size) ? min_intra_size: target_pct;
}
int VP9EncoderImpl::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<VideoFrameType>* frame_types) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (input_image.IsZeroSize()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (encoded_complete_callback_ == NULL) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
VideoFrameType frame_type = kDeltaFrame;
// We only support one stream at the moment.
if (frame_types && frame_types->size() > 0) {
frame_type = (*frame_types)[0];
}
DCHECK_EQ(input_image.width(), static_cast<int>(raw_->d_w));
DCHECK_EQ(input_image.height(), static_cast<int>(raw_->d_h));
// Set input image for use in the callback.
// This was necessary since you need some information from input_image.
// You can save only the necessary information (such as timestamp) instead of
// doing this.
input_image_ = &input_image;
// Image in vpx_image_t format.
// Input image is const. VPX's raw image is not defined as const.
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(input_image.buffer(kYPlane));
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(input_image.buffer(kUPlane));
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(input_image.buffer(kVPlane));
raw_->stride[VPX_PLANE_Y] = input_image.stride(kYPlane);
raw_->stride[VPX_PLANE_U] = input_image.stride(kUPlane);
raw_->stride[VPX_PLANE_V] = input_image.stride(kVPlane);
int flags = 0;
bool send_keyframe = (frame_type == kKeyFrame);
if (send_keyframe) {
// Key frame request from caller.
flags = VPX_EFLAG_FORCE_KF;
}
assert(codec_.maxFramerate > 0);
uint32_t duration = 90000 / codec_.maxFramerate;
if (vpx_codec_encode(encoder_, raw_, timestamp_, duration, flags,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
timestamp_ += duration;
return WEBRTC_VIDEO_CODEC_OK;
}
void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
const vpx_codec_cx_pkt& pkt,
uint32_t timestamp) {
assert(codec_specific != NULL);
codec_specific->codecType = kVideoCodecVP9;
CodecSpecificInfoVP9 *vp9_info = &(codec_specific->codecSpecific.VP9);
// TODO(asapersson): Set correct values.
vp9_info->inter_pic_predicted =
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? false : true;
vp9_info->flexible_mode = codec_.codecSpecific.VP9.flexibleMode;
vp9_info->ss_data_available = ((pkt.data.frame.flags & VPX_FRAME_IS_KEY) &&
!codec_.codecSpecific.VP9.flexibleMode)
? true
: false;
if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) {
gof_idx_ = 0;
}
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
assert(num_temporal_layers_ > 0);
assert(num_spatial_layers_ > 0);
if (num_temporal_layers_ == 1) {
assert(layer_id.temporal_layer_id == 0);
vp9_info->temporal_idx = kNoTemporalIdx;
} else {
vp9_info->temporal_idx = layer_id.temporal_layer_id;
}
if (num_spatial_layers_ == 1) {
assert(layer_id.spatial_layer_id == 0);
vp9_info->spatial_idx = kNoSpatialIdx;
} else {
vp9_info->spatial_idx = layer_id.spatial_layer_id;
}
if (layer_id.spatial_layer_id != 0) {
vp9_info->ss_data_available = false;
}
if (vp9_info->flexible_mode) {
vp9_info->gof_idx = kNoGofIdx;
} else {
vp9_info->gof_idx =
static_cast<uint8_t>(gof_idx_++ % gof_.num_frames_in_gof);
}
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->temporal_up_switch = true;
if (layer_id.spatial_layer_id == 0) {
picture_id_ = (picture_id_ + 1) & 0x7FFF;
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->inter_layer_predicted = false;
} else {
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->inter_layer_predicted = true;
}
vp9_info->picture_id = picture_id_;
if (!vp9_info->flexible_mode) {
if (layer_id.temporal_layer_id == 0 && layer_id.spatial_layer_id == 0) {
tl0_pic_idx_++;
}
vp9_info->tl0_pic_idx = tl0_pic_idx_;
}
// Always populate this, so that the packetizer can properly set the marker
// bit.
vp9_info->num_spatial_layers = num_spatial_layers_;
if (vp9_info->ss_data_available) {
vp9_info->spatial_layer_resolution_present = true;
for (size_t i = 0; i < vp9_info->num_spatial_layers; ++i) {
vp9_info->width[i] = codec_.width *
svc_internal_.svc_params.scaling_factor_num[i] /
svc_internal_.svc_params.scaling_factor_den[i];
vp9_info->height[i] = codec_.height *
svc_internal_.svc_params.scaling_factor_num[i] /
svc_internal_.svc_params.scaling_factor_den[i];
}
if (!vp9_info->flexible_mode) {
vp9_info->gof.CopyGofInfoVP9(gof_);
}
}
}
int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) {
encoded_image_._length = 0;
encoded_image_._frameType = kDeltaFrame;
RTPFragmentationHeader frag_info;
// Note: no data partitioning in VP9, so 1 partition only. We keep this
// fragmentation data for now, until VP9 packetizer is implemented.
frag_info.VerifyAndAllocateFragmentationHeader(1);
int part_idx = 0;
CodecSpecificInfo codec_specific;
assert(pkt->kind == VPX_CODEC_CX_FRAME_PKT);
memcpy(&encoded_image_._buffer[encoded_image_._length], pkt->data.frame.buf,
pkt->data.frame.sz);
frag_info.fragmentationOffset[part_idx] = encoded_image_._length;
frag_info.fragmentationLength[part_idx] =
static_cast<uint32_t>(pkt->data.frame.sz);
frag_info.fragmentationPlType[part_idx] = 0;
frag_info.fragmentationTimeDiff[part_idx] = 0;
encoded_image_._length += static_cast<uint32_t>(pkt->data.frame.sz);
assert(encoded_image_._length <= encoded_image_._size);
// End of frame.
// Check if encoded frame is a key frame.
if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
encoded_image_._frameType = kKeyFrame;
}
PopulateCodecSpecific(&codec_specific, *pkt, input_image_->timestamp());
if (encoded_image_._length > 0) {
TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_._length);
encoded_image_._timeStamp = input_image_->timestamp();
encoded_image_.capture_time_ms_ = input_image_->render_time_ms();
encoded_image_._encodedHeight = raw_->d_h;
encoded_image_._encodedWidth = raw_->d_w;
encoded_complete_callback_->Encoded(encoded_image_, &codec_specific,
&frag_info);
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::SetChannelParameters(uint32_t packet_loss, int64_t rtt) {
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
VP9Decoder* VP9Decoder::Create() {
return new VP9DecoderImpl();
}
VP9DecoderImpl::VP9DecoderImpl()
: decode_complete_callback_(NULL),
inited_(false),
decoder_(NULL),
key_frame_required_(true) {
memset(&codec_, 0, sizeof(codec_));
}
VP9DecoderImpl::~VP9DecoderImpl() {
inited_ = true; // in order to do the actual release
Release();
int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse();
if (num_buffers_in_use > 0) {
// The frame buffers are reference counted and frames are exposed after
// decoding. There may be valid usage cases where previous frames are still
// referenced after ~VP9DecoderImpl that is not a leak.
LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still "
<< "referenced during ~VP9DecoderImpl.";
}
}
int VP9DecoderImpl::Reset() {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
InitDecode(&codec_, 1);
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) {
if (inst == NULL) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (decoder_ == NULL) {
decoder_ = new vpx_codec_ctx_t;
}
vpx_codec_dec_cfg_t cfg;
// Setting number of threads to a constant value (1)
cfg.threads = 1;
cfg.h = cfg.w = 0; // set after decode
vpx_codec_flags_t flags = 0;
if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
if (&codec_ != inst) {
// Save VideoCodec instance for later; mainly for duplicating the decoder.
codec_ = *inst;
}
if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
inited_ = true;
// Always start with a complete key frame.
key_frame_required_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Decode(const EncodedImage& input_image,
bool missing_frames,
const RTPFragmentationHeader* fragmentation,
const CodecSpecificInfo* codec_specific_info,
int64_t /*render_time_ms*/) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (decode_complete_callback_ == NULL) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
// Always start with a complete key frame.
if (key_frame_required_) {
if (input_image._frameType != kKeyFrame)
return WEBRTC_VIDEO_CODEC_ERROR;
// We have a key frame - is it complete?
if (input_image._completeFrame) {
key_frame_required_ = false;
} else {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
vpx_codec_iter_t iter = NULL;
vpx_image_t* img;
uint8_t* buffer = input_image._buffer;
if (input_image._length == 0) {
buffer = NULL; // Triggers full frame concealment.
}
// During decode libvpx may get and release buffers from |frame_buffer_pool_|.
// In practice libvpx keeps a few (~3-4) buffers alive at a time.
if (vpx_codec_decode(decoder_,
buffer,
static_cast<unsigned int>(input_image._length),
0,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer.
// It may be released by libvpx during future vpx_codec_decode or
// vpx_codec_destroy calls.
img = vpx_codec_get_frame(decoder_, &iter);
int ret = ReturnFrame(img, input_image._timeStamp);
if (ret != 0) {
return ret;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::ReturnFrame(const vpx_image_t* img, uint32_t timestamp) {
if (img == NULL) {
// Decoder OK and NULL image => No show frame.
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
// This buffer contains all of |img|'s image data, a reference counted
// Vp9FrameBuffer. Performing AddRef/Release ensures it is not released and
// recycled during use (libvpx is done with the buffers after a few
// vpx_codec_decode calls or vpx_codec_destroy).
Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer =
static_cast<Vp9FrameBufferPool::Vp9FrameBuffer*>(img->fb_priv);
img_buffer->AddRef();
// The buffer can be used directly by the VideoFrame (without copy) by
// using a WrappedI420Buffer.
rtc::scoped_refptr<WrappedI420Buffer> img_wrapped_buffer(
new rtc::RefCountedObject<webrtc::WrappedI420Buffer>(
img->d_w, img->d_h,
img->planes[VPX_PLANE_Y], img->stride[VPX_PLANE_Y],
img->planes[VPX_PLANE_U], img->stride[VPX_PLANE_U],
img->planes[VPX_PLANE_V], img->stride[VPX_PLANE_V],
// WrappedI420Buffer's mechanism for allowing the release of its frame
// buffer is through a callback function. This is where we should
// release |img_buffer|.
rtc::Bind(&WrappedI420BufferNoLongerUsedCb, img_buffer)));
VideoFrame decoded_image;
decoded_image.set_video_frame_buffer(img_wrapped_buffer);
decoded_image.set_timestamp(timestamp);
int ret = decode_complete_callback_->Decoded(decoded_image);
if (ret != 0)
return ret;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) {
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Release() {
if (decoder_ != NULL) {
// When a codec is destroyed libvpx will release any buffers of
// |frame_buffer_pool_| it is currently using.
if (vpx_codec_destroy(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete decoder_;
decoder_ = NULL;
}
// Releases buffers from the pool. Any buffers not in use are deleted. Buffers
// still referenced externally are deleted once fully released, not returning
// to the pool.
frame_buffer_pool_.ClearPool();
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
} // namespace webrtc