Files
platform-external-webrtc/webrtc/base/testutils.h
Niels Möller b00dc386d3 Delete GetExecutablePath and related unused code.
The function GetExecutablePath is a hack with poor portability. Delete
it and its caller GetTestFilePath. The latter was used in
videoframe_unittest.h, where it is replaced by
webrtc::test::ResourcePath.

Delete unused functions declared in base/testutils.h: ReadFile,
GetSiblingDirectory, GetGoogle3Directory, GetTalkDirectory,
CmpHelperFileEq, EXPECT_FILEEQ, ASSERT_FILEEQ.

Delete unused functions declared in media/base/testutils.h:
GetTestFilePath (see above), LoadPlanarYuvTestImage,
DumpPlanarYuvTestImage, ComputePSNR, ComputeSumSquareError.

The functions LoadPlanarYuvTestImage, DumpPlanarYuvTestImage were used
in yuvscaler_unittests.cc and planarfunctions_unittests.cc, under
webrtc/pc. However, these tests are never compiled or run, and appear
not to have been for the last few years, and are therefore deleted
rather than updated. It might make sense to check if libyuv have
comparable tests, and if not, resurrect them as part of libyuv
unittests.

BUG=
R=perkj@webrtc.org

Review URL: https://codereview.webrtc.org/2058043002 .

Cr-Commit-Position: refs/heads/master@{#13163}
2016-06-16 10:44:44 +00:00

567 lines
18 KiB
C++

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_TESTUTILS_H__
#define WEBRTC_BASE_TESTUTILS_H__
// Utilities for testing rtc infrastructure in unittests
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
#include <X11/Xlib.h>
#include <X11/extensions/Xrandr.h>
// X defines a few macros that stomp on types that gunit.h uses.
#undef None
#undef Bool
#endif
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "webrtc/base/arraysize.h"
#include "webrtc/base/asyncsocket.h"
#include "webrtc/base/common.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/nethelpers.h"
#include "webrtc/base/pathutils.h"
#include "webrtc/base/stream.h"
#include "webrtc/base/stringencode.h"
#include "webrtc/base/stringutils.h"
#include "webrtc/base/thread.h"
namespace testing {
using namespace rtc;
///////////////////////////////////////////////////////////////////////////////
// StreamSink - Monitor asynchronously signalled events from StreamInterface
// or AsyncSocket (which should probably be a StreamInterface.
///////////////////////////////////////////////////////////////////////////////
// Note: Any event that is an error is treaded as SSE_ERROR instead of that
// event.
enum StreamSinkEvent {
SSE_OPEN = SE_OPEN,
SSE_READ = SE_READ,
SSE_WRITE = SE_WRITE,
SSE_CLOSE = SE_CLOSE,
SSE_ERROR = 16
};
class StreamSink : public sigslot::has_slots<> {
public:
void Monitor(StreamInterface* stream) {
stream->SignalEvent.connect(this, &StreamSink::OnEvent);
events_.erase(stream);
}
void Unmonitor(StreamInterface* stream) {
stream->SignalEvent.disconnect(this);
// In case you forgot to unmonitor a previous object with this address
events_.erase(stream);
}
bool Check(StreamInterface* stream, StreamSinkEvent event, bool reset = true) {
return DoCheck(stream, event, reset);
}
int Events(StreamInterface* stream, bool reset = true) {
return DoEvents(stream, reset);
}
void Monitor(AsyncSocket* socket) {
socket->SignalConnectEvent.connect(this, &StreamSink::OnConnectEvent);
socket->SignalReadEvent.connect(this, &StreamSink::OnReadEvent);
socket->SignalWriteEvent.connect(this, &StreamSink::OnWriteEvent);
socket->SignalCloseEvent.connect(this, &StreamSink::OnCloseEvent);
// In case you forgot to unmonitor a previous object with this address
events_.erase(socket);
}
void Unmonitor(AsyncSocket* socket) {
socket->SignalConnectEvent.disconnect(this);
socket->SignalReadEvent.disconnect(this);
socket->SignalWriteEvent.disconnect(this);
socket->SignalCloseEvent.disconnect(this);
events_.erase(socket);
}
bool Check(AsyncSocket* socket, StreamSinkEvent event, bool reset = true) {
return DoCheck(socket, event, reset);
}
int Events(AsyncSocket* socket, bool reset = true) {
return DoEvents(socket, reset);
}
private:
typedef std::map<void*,int> EventMap;
void OnEvent(StreamInterface* stream, int events, int error) {
if (error) {
events = SSE_ERROR;
}
AddEvents(stream, events);
}
void OnConnectEvent(AsyncSocket* socket) {
AddEvents(socket, SSE_OPEN);
}
void OnReadEvent(AsyncSocket* socket) {
AddEvents(socket, SSE_READ);
}
void OnWriteEvent(AsyncSocket* socket) {
AddEvents(socket, SSE_WRITE);
}
void OnCloseEvent(AsyncSocket* socket, int error) {
AddEvents(socket, (0 == error) ? SSE_CLOSE : SSE_ERROR);
}
void AddEvents(void* obj, int events) {
EventMap::iterator it = events_.find(obj);
if (events_.end() == it) {
events_.insert(EventMap::value_type(obj, events));
} else {
it->second |= events;
}
}
bool DoCheck(void* obj, StreamSinkEvent event, bool reset) {
EventMap::iterator it = events_.find(obj);
if ((events_.end() == it) || (0 == (it->second & event))) {
return false;
}
if (reset) {
it->second &= ~event;
}
return true;
}
int DoEvents(void* obj, bool reset) {
EventMap::iterator it = events_.find(obj);
if (events_.end() == it)
return 0;
int events = it->second;
if (reset) {
it->second = 0;
}
return events;
}
EventMap events_;
};
///////////////////////////////////////////////////////////////////////////////
// StreamSource - Implements stream interface and simulates asynchronous
// events on the stream, without a network. Also buffers written data.
///////////////////////////////////////////////////////////////////////////////
class StreamSource : public StreamInterface {
public:
StreamSource() {
Clear();
}
void Clear() {
readable_data_.clear();
written_data_.clear();
state_ = SS_CLOSED;
read_block_ = 0;
write_block_ = SIZE_UNKNOWN;
}
void QueueString(const char* data) {
QueueData(data, strlen(data));
}
void QueueStringF(const char* format, ...) {
va_list args;
va_start(args, format);
char buffer[1024];
size_t len = vsprintfn(buffer, sizeof(buffer), format, args);
ASSERT(len < sizeof(buffer) - 1);
va_end(args);
QueueData(buffer, len);
}
void QueueData(const char* data, size_t len) {
readable_data_.insert(readable_data_.end(), data, data + len);
if ((SS_OPEN == state_) && (readable_data_.size() == len)) {
SignalEvent(this, SE_READ, 0);
}
}
std::string ReadData() {
std::string data;
// avoid accessing written_data_[0] if it is undefined
if (written_data_.size() > 0) {
data.insert(0, &written_data_[0], written_data_.size());
}
written_data_.clear();
return data;
}
void SetState(StreamState state) {
int events = 0;
if ((SS_OPENING == state_) && (SS_OPEN == state)) {
events |= SE_OPEN;
if (!readable_data_.empty()) {
events |= SE_READ;
}
} else if ((SS_CLOSED != state_) && (SS_CLOSED == state)) {
events |= SE_CLOSE;
}
state_ = state;
if (events) {
SignalEvent(this, events, 0);
}
}
// Will cause Read to block when there are pos bytes in the read queue.
void SetReadBlock(size_t pos) { read_block_ = pos; }
// Will cause Write to block when there are pos bytes in the write queue.
void SetWriteBlock(size_t pos) { write_block_ = pos; }
virtual StreamState GetState() const { return state_; }
virtual StreamResult Read(void* buffer, size_t buffer_len,
size_t* read, int* error) {
if (SS_CLOSED == state_) {
if (error) *error = -1;
return SR_ERROR;
}
if ((SS_OPENING == state_) || (readable_data_.size() <= read_block_)) {
return SR_BLOCK;
}
size_t count = std::min(buffer_len, readable_data_.size() - read_block_);
memcpy(buffer, &readable_data_[0], count);
size_t new_size = readable_data_.size() - count;
// Avoid undefined access beyond the last element of the vector.
// This only happens when new_size is 0.
if (count < readable_data_.size()) {
memmove(&readable_data_[0], &readable_data_[count], new_size);
}
readable_data_.resize(new_size);
if (read) *read = count;
return SR_SUCCESS;
}
virtual StreamResult Write(const void* data, size_t data_len,
size_t* written, int* error) {
if (SS_CLOSED == state_) {
if (error) *error = -1;
return SR_ERROR;
}
if (SS_OPENING == state_) {
return SR_BLOCK;
}
if (SIZE_UNKNOWN != write_block_) {
if (written_data_.size() >= write_block_) {
return SR_BLOCK;
}
if (data_len > (write_block_ - written_data_.size())) {
data_len = write_block_ - written_data_.size();
}
}
if (written) *written = data_len;
const char* cdata = static_cast<const char*>(data);
written_data_.insert(written_data_.end(), cdata, cdata + data_len);
return SR_SUCCESS;
}
virtual void Close() { state_ = SS_CLOSED; }
private:
typedef std::vector<char> Buffer;
Buffer readable_data_, written_data_;
StreamState state_;
size_t read_block_, write_block_;
};
///////////////////////////////////////////////////////////////////////////////
// SocketTestClient
// Creates a simulated client for testing. Works on real and virtual networks.
///////////////////////////////////////////////////////////////////////////////
class SocketTestClient : public sigslot::has_slots<> {
public:
SocketTestClient() {
Init(NULL, AF_INET);
}
SocketTestClient(AsyncSocket* socket) {
Init(socket, socket->GetLocalAddress().family());
}
SocketTestClient(const SocketAddress& address) {
Init(NULL, address.family());
socket_->Connect(address);
}
AsyncSocket* socket() { return socket_.get(); }
void QueueString(const char* data) {
QueueData(data, strlen(data));
}
void QueueStringF(const char* format, ...) {
va_list args;
va_start(args, format);
char buffer[1024];
size_t len = vsprintfn(buffer, sizeof(buffer), format, args);
ASSERT(len < sizeof(buffer) - 1);
va_end(args);
QueueData(buffer, len);
}
void QueueData(const char* data, size_t len) {
send_buffer_.insert(send_buffer_.end(), data, data + len);
if (Socket::CS_CONNECTED == socket_->GetState()) {
Flush();
}
}
std::string ReadData() {
std::string data(&recv_buffer_[0], recv_buffer_.size());
recv_buffer_.clear();
return data;
}
bool IsConnected() const {
return (Socket::CS_CONNECTED == socket_->GetState());
}
bool IsClosed() const {
return (Socket::CS_CLOSED == socket_->GetState());
}
private:
typedef std::vector<char> Buffer;
void Init(AsyncSocket* socket, int family) {
if (!socket) {
socket = Thread::Current()->socketserver()
->CreateAsyncSocket(family, SOCK_STREAM);
}
socket_.reset(socket);
socket_->SignalConnectEvent.connect(this,
&SocketTestClient::OnConnectEvent);
socket_->SignalReadEvent.connect(this, &SocketTestClient::OnReadEvent);
socket_->SignalWriteEvent.connect(this, &SocketTestClient::OnWriteEvent);
socket_->SignalCloseEvent.connect(this, &SocketTestClient::OnCloseEvent);
}
void Flush() {
size_t sent = 0;
while (sent < send_buffer_.size()) {
int result = socket_->Send(&send_buffer_[sent],
send_buffer_.size() - sent);
if (result > 0) {
sent += result;
} else {
break;
}
}
size_t new_size = send_buffer_.size() - sent;
memmove(&send_buffer_[0], &send_buffer_[sent], new_size);
send_buffer_.resize(new_size);
}
void OnConnectEvent(AsyncSocket* socket) {
if (!send_buffer_.empty()) {
Flush();
}
}
void OnReadEvent(AsyncSocket* socket) {
char data[64 * 1024];
int result = socket_->Recv(data, arraysize(data), nullptr);
if (result > 0) {
recv_buffer_.insert(recv_buffer_.end(), data, data + result);
}
}
void OnWriteEvent(AsyncSocket* socket) {
if (!send_buffer_.empty()) {
Flush();
}
}
void OnCloseEvent(AsyncSocket* socket, int error) {
}
std::unique_ptr<AsyncSocket> socket_;
Buffer send_buffer_, recv_buffer_;
};
///////////////////////////////////////////////////////////////////////////////
// SocketTestServer
// Creates a simulated server for testing. Works on real and virtual networks.
///////////////////////////////////////////////////////////////////////////////
class SocketTestServer : public sigslot::has_slots<> {
public:
SocketTestServer(const SocketAddress& address)
: socket_(Thread::Current()->socketserver()
->CreateAsyncSocket(address.family(), SOCK_STREAM))
{
socket_->SignalReadEvent.connect(this, &SocketTestServer::OnReadEvent);
socket_->Bind(address);
socket_->Listen(5);
}
virtual ~SocketTestServer() {
clear();
}
size_t size() const { return clients_.size(); }
SocketTestClient* client(size_t index) const { return clients_[index]; }
SocketTestClient* operator[](size_t index) const { return client(index); }
void clear() {
for (size_t i=0; i<clients_.size(); ++i) {
delete clients_[i];
}
clients_.clear();
}
private:
void OnReadEvent(AsyncSocket* socket) {
AsyncSocket* accepted =
static_cast<AsyncSocket*>(socket_->Accept(NULL));
if (!accepted)
return;
clients_.push_back(new SocketTestClient(accepted));
}
std::unique_ptr<AsyncSocket> socket_;
std::vector<SocketTestClient*> clients_;
};
///////////////////////////////////////////////////////////////////////////////
// Unittest predicates which are similar to STREQ, but for raw memory
///////////////////////////////////////////////////////////////////////////////
inline AssertionResult CmpHelperMemEq(const char* expected_expression,
const char* expected_length_expression,
const char* actual_expression,
const char* actual_length_expression,
const void* expected,
size_t expected_length,
const void* actual,
size_t actual_length)
{
if ((expected_length == actual_length)
&& (0 == memcmp(expected, actual, expected_length))) {
return AssertionSuccess();
}
Message msg;
msg << "Value of: " << actual_expression
<< " [" << actual_length_expression << "]";
if (true) { //!actual_value.Equals(actual_expression)) {
size_t buffer_size = actual_length * 2 + 1;
char* buffer = STACK_ARRAY(char, buffer_size);
hex_encode(buffer, buffer_size,
reinterpret_cast<const char*>(actual), actual_length);
msg << "\n Actual: " << buffer << " [" << actual_length << "]";
}
msg << "\nExpected: " << expected_expression
<< " [" << expected_length_expression << "]";
if (true) { //!expected_value.Equals(expected_expression)) {
size_t buffer_size = expected_length * 2 + 1;
char* buffer = STACK_ARRAY(char, buffer_size);
hex_encode(buffer, buffer_size,
reinterpret_cast<const char*>(expected), expected_length);
msg << "\nWhich is: " << buffer << " [" << expected_length << "]";
}
return AssertionFailure(msg);
}
#define EXPECT_MEMEQ(expected, expected_length, actual, actual_length) \
EXPECT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \
actual, actual_length)
#define ASSERT_MEMEQ(expected, expected_length, actual, actual_length) \
ASSERT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \
actual, actual_length)
///////////////////////////////////////////////////////////////////////////////
// Helpers for initializing constant memory with integers in a particular byte
// order
///////////////////////////////////////////////////////////////////////////////
#define BYTE_CAST(x) static_cast<uint8_t>((x)&0xFF)
// Declare a N-bit integer as a little-endian sequence of bytes
#define LE16(x) BYTE_CAST(((uint16_t)x) >> 0), BYTE_CAST(((uint16_t)x) >> 8)
#define LE32(x) \
BYTE_CAST(((uint32_t)x) >> 0), BYTE_CAST(((uint32_t)x) >> 8), \
BYTE_CAST(((uint32_t)x) >> 16), BYTE_CAST(((uint32_t)x) >> 24)
#define LE64(x) \
BYTE_CAST(((uint64_t)x) >> 0), BYTE_CAST(((uint64_t)x) >> 8), \
BYTE_CAST(((uint64_t)x) >> 16), BYTE_CAST(((uint64_t)x) >> 24), \
BYTE_CAST(((uint64_t)x) >> 32), BYTE_CAST(((uint64_t)x) >> 40), \
BYTE_CAST(((uint64_t)x) >> 48), BYTE_CAST(((uint64_t)x) >> 56)
// Declare a N-bit integer as a big-endian (Internet) sequence of bytes
#define BE16(x) BYTE_CAST(((uint16_t)x) >> 8), BYTE_CAST(((uint16_t)x) >> 0)
#define BE32(x) \
BYTE_CAST(((uint32_t)x) >> 24), BYTE_CAST(((uint32_t)x) >> 16), \
BYTE_CAST(((uint32_t)x) >> 8), BYTE_CAST(((uint32_t)x) >> 0)
#define BE64(x) \
BYTE_CAST(((uint64_t)x) >> 56), BYTE_CAST(((uint64_t)x) >> 48), \
BYTE_CAST(((uint64_t)x) >> 40), BYTE_CAST(((uint64_t)x) >> 32), \
BYTE_CAST(((uint64_t)x) >> 24), BYTE_CAST(((uint64_t)x) >> 16), \
BYTE_CAST(((uint64_t)x) >> 8), BYTE_CAST(((uint64_t)x) >> 0)
// Declare a N-bit integer as a this-endian (local machine) sequence of bytes
#ifndef BIG_ENDIAN
#define BIG_ENDIAN 1
#endif // BIG_ENDIAN
#if BIG_ENDIAN
#define TE16 BE16
#define TE32 BE32
#define TE64 BE64
#else // !BIG_ENDIAN
#define TE16 LE16
#define TE32 LE32
#define TE64 LE64
#endif // !BIG_ENDIAN
///////////////////////////////////////////////////////////////////////////////
// Helpers for determining if X/screencasting is available (on linux).
#define MAYBE_SKIP_SCREENCAST_TEST() \
if (!testing::IsScreencastingAvailable()) { \
LOG(LS_WARNING) << "Skipping test, since it doesn't have the requisite " \
<< "X environment for screen capture."; \
return; \
} \
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
struct XDisplay {
XDisplay() : display_(XOpenDisplay(NULL)) { }
~XDisplay() { if (display_) XCloseDisplay(display_); }
bool IsValid() const { return display_ != NULL; }
operator Display*() { return display_; }
private:
Display* display_;
};
#endif
// Returns true if screencasting is available. When false, anything that uses
// screencasting features may fail.
inline bool IsScreencastingAvailable() {
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
XDisplay display;
if (!display.IsValid()) {
LOG(LS_WARNING) << "No X Display available.";
return false;
}
int ignored_int, major_version, minor_version;
if (!XRRQueryExtension(display, &ignored_int, &ignored_int) ||
!XRRQueryVersion(display, &major_version, &minor_version) ||
major_version < 1 ||
(major_version < 2 && minor_version < 3)) {
LOG(LS_WARNING) << "XRandr version: " << major_version << "."
<< minor_version;
LOG(LS_WARNING) << "XRandr is not supported or is too old (pre 1.3).";
return false;
}
#endif
return true;
}
} // namespace testing
#endif // WEBRTC_BASE_TESTUTILS_H__