Files
platform-external-webrtc/webrtc/modules/audio_processing/level_controller/gain_applier.cc
peah b59ff8952f This CL provides improved parameter tuning for the level controller as well as some further minor changes.
It does:
-Handle saturations in a better manner by adding different gain change
step sizes for upwards and downwards changes, as well as when there
is saturation.
-Handle conditions with initial noise-only regions in a better way by
setting a high initial peak level estimate which is gradually reduced until
certainty about the peak level is achieved.
-Limit the maximum gain to limit noise amplification, and to reflect that it
initially is intended to be used in cascade with the fixed digital AGC mode.
-Lower the maximum allowed stationary noise floor to reduce the risk of
excessive noise amplification.
-Lower the target gain to reduce the risk of causing the AEC on the other
end to fail due to high playout levels triggering nonlinearities.
This also reduces the risk for saturation.
-Handle the noise-only regions in a better manner.

NOTRY=true
TBR=aleloi
BUG=webrtc:5920

Review-Url: https://codereview.webrtc.org/2111553002
Cr-Commit-Position: refs/heads/master@{#13350}
2016-06-30 16:19:41 +00:00

161 lines
5.1 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/level_controller/gain_applier.h"
#include <algorithm>
#include "webrtc/base/array_view.h"
#include "webrtc/base/checks.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
namespace webrtc {
namespace {
const float kMaxSampleValue = 32767.f;
const float kMinSampleValue = -32767.f;
int CountSaturations(rtc::ArrayView<const float> in) {
return std::count_if(in.begin(), in.end(), [](const float& v) {
return v >= kMaxSampleValue || v <= kMinSampleValue;
});
}
int CountSaturations(const AudioBuffer& audio) {
int num_saturations = 0;
for (size_t k = 0; k < audio.num_channels(); ++k) {
num_saturations += CountSaturations(rtc::ArrayView<const float>(
audio.channels_const_f()[k], audio.num_frames()));
}
return num_saturations;
}
void LimitToAllowedRange(rtc::ArrayView<float> x) {
for (auto& v : x) {
v = std::max(kMinSampleValue, v);
v = std::min(kMaxSampleValue, v);
}
}
void LimitToAllowedRange(AudioBuffer* audio) {
for (size_t k = 0; k < audio->num_channels(); ++k) {
LimitToAllowedRange(
rtc::ArrayView<float>(audio->channels_f()[k], audio->num_frames()));
}
}
float ApplyIncreasingGain(float new_gain,
float old_gain,
float step_size,
rtc::ArrayView<float> x) {
RTC_DCHECK_LT(0.f, step_size);
float gain = old_gain;
for (auto& v : x) {
gain = std::min(new_gain, gain + step_size);
v *= gain;
}
return gain;
}
float ApplyDecreasingGain(float new_gain,
float old_gain,
float step_size,
rtc::ArrayView<float> x) {
RTC_DCHECK_GT(0.f, step_size);
float gain = old_gain;
for (auto& v : x) {
gain = std::max(new_gain, gain + step_size);
v *= gain;
}
return gain;
}
float ApplyConstantGain(float gain, rtc::ArrayView<float> x) {
for (auto& v : x) {
v *= gain;
}
return gain;
}
float ApplyGain(float new_gain,
float old_gain,
float increase_step_size,
float decrease_step_size,
rtc::ArrayView<float> x) {
RTC_DCHECK_LT(0.f, increase_step_size);
RTC_DCHECK_GT(0.f, decrease_step_size);
if (new_gain == old_gain) {
return ApplyConstantGain(new_gain, x);
} else if (new_gain > old_gain) {
return ApplyIncreasingGain(new_gain, old_gain, increase_step_size, x);
} else {
return ApplyDecreasingGain(new_gain, old_gain, decrease_step_size, x);
}
}
} // namespace
GainApplier::GainApplier(ApmDataDumper* data_dumper)
: data_dumper_(data_dumper) {}
void GainApplier::Initialize(int sample_rate_hz) {
RTC_DCHECK(sample_rate_hz == AudioProcessing::kSampleRate8kHz ||
sample_rate_hz == AudioProcessing::kSampleRate16kHz ||
sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
sample_rate_hz == AudioProcessing::kSampleRate48kHz);
const float kGainIncreaseStepSize48kHz = 0.0001f;
const float kGainDecreaseStepSize48kHz = -0.01f;
const float kGainSaturatedDecreaseStepSize48kHz = -0.05f;
last_frame_was_saturated_ = false;
old_gain_ = 1.f;
gain_increase_step_size_ =
kGainIncreaseStepSize48kHz *
(static_cast<float>(AudioProcessing::kSampleRate48kHz) / sample_rate_hz);
gain_normal_decrease_step_size_ =
kGainDecreaseStepSize48kHz *
(static_cast<float>(AudioProcessing::kSampleRate48kHz) / sample_rate_hz);
gain_saturated_decrease_step_size_ =
kGainSaturatedDecreaseStepSize48kHz *
(static_cast<float>(AudioProcessing::kSampleRate48kHz) / sample_rate_hz);
}
int GainApplier::Process(float new_gain, AudioBuffer* audio) {
RTC_CHECK_NE(0.f, gain_increase_step_size_);
RTC_CHECK_NE(0.f, gain_normal_decrease_step_size_);
RTC_CHECK_NE(0.f, gain_saturated_decrease_step_size_);
int num_saturations = 0;
if (new_gain != 1.f) {
float last_applied_gain = 1.f;
float gain_decrease_step_size = last_frame_was_saturated_
? gain_saturated_decrease_step_size_
: gain_normal_decrease_step_size_;
for (size_t k = 0; k < audio->num_channels(); ++k) {
last_applied_gain = ApplyGain(
new_gain, old_gain_, gain_increase_step_size_,
gain_decrease_step_size,
rtc::ArrayView<float>(audio->channels_f()[k], audio->num_frames()));
}
num_saturations = CountSaturations(*audio);
LimitToAllowedRange(audio);
old_gain_ = last_applied_gain;
}
data_dumper_->DumpRaw("lc_last_applied_gain", 1, &old_gain_);
return num_saturations;
}
} // namespace webrtc