
R=stefan@webrtc.org BUG= Review URL: https://webrtc-codereview.appspot.com/35389004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7841 4adac7df-926f-26a2-2b94-8c16560cd09d
1002 lines
41 KiB
C++
1002 lines
41 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
|
|
#define WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "webrtc/common.h"
|
|
#include "webrtc/experiments.h"
|
|
#include "webrtc/common_video/interface/i420_video_frame.h"
|
|
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
|
|
#include "webrtc/modules/video_coding/codecs/interface/mock/mock_video_codec_interface.h"
|
|
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
|
|
#include "webrtc/modules/video_coding/codecs/vp8/temporal_layers.h"
|
|
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
using ::testing::_;
|
|
using ::testing::AllOf;
|
|
using ::testing::Field;
|
|
using ::testing::Return;
|
|
|
|
namespace webrtc {
|
|
namespace testing {
|
|
|
|
const int kDefaultWidth = 1280;
|
|
const int kDefaultHeight = 720;
|
|
const int kNumberOfSimulcastStreams = 3;
|
|
const int kColorY = 66;
|
|
const int kColorU = 22;
|
|
const int kColorV = 33;
|
|
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
|
|
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
|
|
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
|
|
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
|
|
|
|
template<typename T> void SetExpectedValues3(T value0,
|
|
T value1,
|
|
T value2,
|
|
T* expected_values) {
|
|
expected_values[0] = value0;
|
|
expected_values[1] = value1;
|
|
expected_values[2] = value2;
|
|
}
|
|
|
|
class Vp8TestEncodedImageCallback : public EncodedImageCallback {
|
|
public:
|
|
Vp8TestEncodedImageCallback()
|
|
: picture_id_(-1) {
|
|
memset(temporal_layer_, -1, sizeof(temporal_layer_));
|
|
memset(layer_sync_, false, sizeof(layer_sync_));
|
|
}
|
|
|
|
~Vp8TestEncodedImageCallback() {
|
|
delete [] encoded_key_frame_._buffer;
|
|
delete [] encoded_frame_._buffer;
|
|
}
|
|
|
|
virtual int32_t Encoded(const EncodedImage& encoded_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const RTPFragmentationHeader* fragmentation) {
|
|
// Only store the base layer.
|
|
if (codec_specific_info->codecSpecific.VP8.simulcastIdx == 0) {
|
|
if (encoded_image._frameType == kKeyFrame) {
|
|
delete [] encoded_key_frame_._buffer;
|
|
encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
|
|
encoded_key_frame_._size = encoded_image._size;
|
|
encoded_key_frame_._length = encoded_image._length;
|
|
encoded_key_frame_._frameType = kKeyFrame;
|
|
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
|
|
memcpy(encoded_key_frame_._buffer,
|
|
encoded_image._buffer,
|
|
encoded_image._length);
|
|
} else {
|
|
delete [] encoded_frame_._buffer;
|
|
encoded_frame_._buffer = new uint8_t[encoded_image._size];
|
|
encoded_frame_._size = encoded_image._size;
|
|
encoded_frame_._length = encoded_image._length;
|
|
memcpy(encoded_frame_._buffer,
|
|
encoded_image._buffer,
|
|
encoded_image._length);
|
|
}
|
|
}
|
|
picture_id_ = codec_specific_info->codecSpecific.VP8.pictureId;
|
|
layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
|
|
codec_specific_info->codecSpecific.VP8.layerSync;
|
|
temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
|
|
codec_specific_info->codecSpecific.VP8.temporalIdx;
|
|
return 0;
|
|
}
|
|
void GetLastEncodedFrameInfo(int* picture_id, int* temporal_layer,
|
|
bool* layer_sync, int stream) {
|
|
*picture_id = picture_id_;
|
|
*temporal_layer = temporal_layer_[stream];
|
|
*layer_sync = layer_sync_[stream];
|
|
}
|
|
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
|
|
*encoded_key_frame = encoded_key_frame_;
|
|
}
|
|
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
|
|
*encoded_frame = encoded_frame_;
|
|
}
|
|
|
|
private:
|
|
EncodedImage encoded_key_frame_;
|
|
EncodedImage encoded_frame_;
|
|
int picture_id_;
|
|
int temporal_layer_[kNumberOfSimulcastStreams];
|
|
bool layer_sync_[kNumberOfSimulcastStreams];
|
|
};
|
|
|
|
class Vp8TestDecodedImageCallback : public DecodedImageCallback {
|
|
public:
|
|
Vp8TestDecodedImageCallback()
|
|
: decoded_frames_(0) {
|
|
}
|
|
virtual int32_t Decoded(I420VideoFrame& decoded_image) {
|
|
last_decoded_frame_.CopyFrame(decoded_image);
|
|
for (int i = 0; i < decoded_image.width(); ++i) {
|
|
EXPECT_NEAR(kColorY, decoded_image.buffer(kYPlane)[i], 1);
|
|
}
|
|
|
|
// TODO(mikhal): Verify the difference between U,V and the original.
|
|
for (int i = 0; i < ((decoded_image.width() + 1) / 2); ++i) {
|
|
EXPECT_NEAR(kColorU, decoded_image.buffer(kUPlane)[i], 4);
|
|
EXPECT_NEAR(kColorV, decoded_image.buffer(kVPlane)[i], 4);
|
|
}
|
|
decoded_frames_++;
|
|
return 0;
|
|
}
|
|
int DecodedFrames() {
|
|
return decoded_frames_;
|
|
}
|
|
void GetLastDecodedFrame(I420VideoFrame* decoded_frame) {
|
|
decoded_frame->SwapFrame(&last_decoded_frame_);
|
|
}
|
|
|
|
private:
|
|
int decoded_frames_;
|
|
I420VideoFrame last_decoded_frame_;
|
|
};
|
|
|
|
class SkipEncodingUnusedStreamsTest {
|
|
public:
|
|
std::vector<unsigned int> RunTest(VP8Encoder* encoder,
|
|
VideoCodec* settings,
|
|
uint32_t target_bitrate) {
|
|
Config options;
|
|
SpyingTemporalLayersFactory* spy_factory =
|
|
new SpyingTemporalLayersFactory();
|
|
options.Set<TemporalLayers::Factory>(spy_factory);
|
|
settings->extra_options = &options;
|
|
EXPECT_EQ(0, encoder->InitEncode(settings, 1, 1200));
|
|
|
|
encoder->SetRates(target_bitrate, 30);
|
|
|
|
std::vector<unsigned int> configured_bitrates;
|
|
for (std::vector<TemporalLayers*>::const_iterator it =
|
|
spy_factory->spying_layers_.begin();
|
|
it != spy_factory->spying_layers_.end();
|
|
++it) {
|
|
configured_bitrates.push_back(
|
|
static_cast<SpyingTemporalLayers*>(*it)->configured_bitrate_);
|
|
}
|
|
return configured_bitrates;
|
|
}
|
|
|
|
class SpyingTemporalLayers : public TemporalLayers {
|
|
public:
|
|
explicit SpyingTemporalLayers(TemporalLayers* layers)
|
|
: configured_bitrate_(0), layers_(layers) {}
|
|
|
|
virtual ~SpyingTemporalLayers() { delete layers_; }
|
|
|
|
virtual int EncodeFlags(uint32_t timestamp) {
|
|
return layers_->EncodeFlags(timestamp);
|
|
}
|
|
|
|
virtual bool ConfigureBitrates(int bitrate_kbit,
|
|
int max_bitrate_kbit,
|
|
int framerate,
|
|
vpx_codec_enc_cfg_t* cfg) OVERRIDE {
|
|
configured_bitrate_ = bitrate_kbit;
|
|
return layers_->ConfigureBitrates(
|
|
bitrate_kbit, max_bitrate_kbit, framerate, cfg);
|
|
}
|
|
|
|
virtual void PopulateCodecSpecific(bool base_layer_sync,
|
|
CodecSpecificInfoVP8* vp8_info,
|
|
uint32_t timestamp) OVERRIDE {
|
|
layers_->PopulateCodecSpecific(base_layer_sync, vp8_info, timestamp);
|
|
}
|
|
|
|
virtual void FrameEncoded(unsigned int size, uint32_t timestamp) OVERRIDE {
|
|
layers_->FrameEncoded(size, timestamp);
|
|
}
|
|
|
|
virtual int CurrentLayerId() const OVERRIDE {
|
|
return layers_->CurrentLayerId();
|
|
}
|
|
|
|
int configured_bitrate_;
|
|
TemporalLayers* layers_;
|
|
};
|
|
|
|
class SpyingTemporalLayersFactory : public TemporalLayers::Factory {
|
|
public:
|
|
virtual ~SpyingTemporalLayersFactory() {}
|
|
virtual TemporalLayers* Create(int temporal_layers,
|
|
uint8_t initial_tl0_pic_idx) const OVERRIDE {
|
|
SpyingTemporalLayers* layers =
|
|
new SpyingTemporalLayers(TemporalLayers::Factory::Create(
|
|
temporal_layers, initial_tl0_pic_idx));
|
|
spying_layers_.push_back(layers);
|
|
return layers;
|
|
}
|
|
|
|
mutable std::vector<TemporalLayers*> spying_layers_;
|
|
};
|
|
};
|
|
|
|
class TestVp8Simulcast : public ::testing::Test {
|
|
public:
|
|
TestVp8Simulcast(VP8Encoder* encoder, VP8Decoder* decoder)
|
|
: encoder_(encoder),
|
|
decoder_(decoder) {}
|
|
|
|
// Creates an I420VideoFrame from |plane_colors|.
|
|
static void CreateImage(I420VideoFrame* frame,
|
|
int plane_colors[kNumOfPlanes]) {
|
|
for (int plane_num = 0; plane_num < kNumOfPlanes; ++plane_num) {
|
|
int width = (plane_num != kYPlane ? (frame->width() + 1) / 2 :
|
|
frame->width());
|
|
int height = (plane_num != kYPlane ? (frame->height() + 1) / 2 :
|
|
frame->height());
|
|
PlaneType plane_type = static_cast<PlaneType>(plane_num);
|
|
uint8_t* data = frame->buffer(plane_type);
|
|
// Setting allocated area to zero - setting only image size to
|
|
// requested values - will make it easier to distinguish between image
|
|
// size and frame size (accounting for stride).
|
|
memset(frame->buffer(plane_type), 0, frame->allocated_size(plane_type));
|
|
for (int i = 0; i < height; i++) {
|
|
memset(data, plane_colors[plane_num], width);
|
|
data += frame->stride(plane_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DefaultSettings(VideoCodec* settings,
|
|
const int* temporal_layer_profile) {
|
|
assert(settings);
|
|
memset(settings, 0, sizeof(VideoCodec));
|
|
strncpy(settings->plName, "VP8", 4);
|
|
settings->codecType = kVideoCodecVP8;
|
|
// 96 to 127 dynamic payload types for video codecs
|
|
settings->plType = 120;
|
|
settings->startBitrate = 300;
|
|
settings->minBitrate = 30;
|
|
settings->maxBitrate = 0;
|
|
settings->maxFramerate = 30;
|
|
settings->width = kDefaultWidth;
|
|
settings->height = kDefaultHeight;
|
|
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
|
|
ASSERT_EQ(3, kNumberOfSimulcastStreams);
|
|
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4,
|
|
kMaxBitrates[0],
|
|
kMinBitrates[0],
|
|
kTargetBitrates[0],
|
|
&settings->simulcastStream[0],
|
|
temporal_layer_profile[0]);
|
|
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2,
|
|
kMaxBitrates[1],
|
|
kMinBitrates[1],
|
|
kTargetBitrates[1],
|
|
&settings->simulcastStream[1],
|
|
temporal_layer_profile[1]);
|
|
ConfigureStream(kDefaultWidth, kDefaultHeight,
|
|
kMaxBitrates[2],
|
|
kMinBitrates[2],
|
|
kTargetBitrates[2],
|
|
&settings->simulcastStream[2],
|
|
temporal_layer_profile[2]);
|
|
settings->codecSpecific.VP8.resilience = kResilientStream;
|
|
settings->codecSpecific.VP8.denoisingOn = true;
|
|
settings->codecSpecific.VP8.errorConcealmentOn = false;
|
|
settings->codecSpecific.VP8.automaticResizeOn = false;
|
|
settings->codecSpecific.VP8.feedbackModeOn = false;
|
|
settings->codecSpecific.VP8.frameDroppingOn = true;
|
|
settings->codecSpecific.VP8.keyFrameInterval = 3000;
|
|
}
|
|
|
|
static void ConfigureStream(int width,
|
|
int height,
|
|
int max_bitrate,
|
|
int min_bitrate,
|
|
int target_bitrate,
|
|
SimulcastStream* stream,
|
|
int num_temporal_layers) {
|
|
assert(stream);
|
|
stream->width = width;
|
|
stream->height = height;
|
|
stream->maxBitrate = max_bitrate;
|
|
stream->minBitrate = min_bitrate;
|
|
stream->targetBitrate = target_bitrate;
|
|
stream->numberOfTemporalLayers = num_temporal_layers;
|
|
stream->qpMax = 45;
|
|
}
|
|
|
|
protected:
|
|
virtual void SetUp() {
|
|
SetUpCodec(kDefaultTemporalLayerProfile);
|
|
}
|
|
|
|
virtual void SetUpCodec(const int* temporal_layer_profile) {
|
|
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
|
|
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
|
|
DefaultSettings(&settings_, temporal_layer_profile);
|
|
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
|
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
|
|
int half_width = (kDefaultWidth + 1) / 2;
|
|
input_frame_.CreateEmptyFrame(kDefaultWidth, kDefaultHeight,
|
|
kDefaultWidth, half_width, half_width);
|
|
memset(input_frame_.buffer(kYPlane), 0,
|
|
input_frame_.allocated_size(kYPlane));
|
|
memset(input_frame_.buffer(kUPlane), 0,
|
|
input_frame_.allocated_size(kUPlane));
|
|
memset(input_frame_.buffer(kVPlane), 0,
|
|
input_frame_.allocated_size(kVPlane));
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
encoder_->Release();
|
|
decoder_->Release();
|
|
}
|
|
|
|
void ExpectStreams(VideoFrameType frame_type, int expected_video_streams) {
|
|
ASSERT_GE(expected_video_streams, 0);
|
|
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
|
|
if (expected_video_streams >= 1) {
|
|
EXPECT_CALL(encoder_callback_, Encoded(
|
|
AllOf(Field(&EncodedImage::_frameType, frame_type),
|
|
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
|
|
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)), _, _)
|
|
)
|
|
.Times(1)
|
|
.WillRepeatedly(Return(0));
|
|
}
|
|
if (expected_video_streams >= 2) {
|
|
EXPECT_CALL(encoder_callback_, Encoded(
|
|
AllOf(Field(&EncodedImage::_frameType, frame_type),
|
|
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
|
|
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)), _, _)
|
|
)
|
|
.Times(1)
|
|
.WillRepeatedly(Return(0));
|
|
}
|
|
if (expected_video_streams >= 3) {
|
|
EXPECT_CALL(encoder_callback_, Encoded(
|
|
AllOf(Field(&EncodedImage::_frameType, frame_type),
|
|
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
|
|
Field(&EncodedImage::_encodedHeight, kDefaultHeight)), _, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(0));
|
|
}
|
|
if (expected_video_streams < kNumberOfSimulcastStreams) {
|
|
EXPECT_CALL(encoder_callback_, Encoded(
|
|
AllOf(Field(&EncodedImage::_frameType, kSkipFrame),
|
|
Field(&EncodedImage::_length, 0)), _, _))
|
|
.Times(kNumberOfSimulcastStreams - expected_video_streams)
|
|
.WillRepeatedly(Return(0));
|
|
}
|
|
}
|
|
|
|
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
|
Vp8TestEncodedImageCallback* encoder_callback,
|
|
const int* expected_temporal_idx,
|
|
const bool* expected_layer_sync,
|
|
int num_spatial_layers) {
|
|
int picture_id = -1;
|
|
int temporal_layer = -1;
|
|
bool layer_sync = false;
|
|
for (int i = 0; i < num_spatial_layers; i++) {
|
|
encoder_callback->GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, i);
|
|
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
|
|
EXPECT_EQ(expected_layer_sync[i], layer_sync);
|
|
}
|
|
}
|
|
|
|
// We currently expect all active streams to generate a key frame even though
|
|
// a key frame was only requested for some of them.
|
|
void TestKeyFrameRequestsOnAllStreams() {
|
|
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, kNumberOfSimulcastStreams);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
frame_types[0] = kKeyFrame;
|
|
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
std::fill(frame_types.begin(), frame_types.end(), kDeltaFrame);
|
|
frame_types[1] = kKeyFrame;
|
|
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
std::fill(frame_types.begin(), frame_types.end(), kDeltaFrame);
|
|
frame_types[2] = kKeyFrame;
|
|
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
std::fill(frame_types.begin(), frame_types.end(), kDeltaFrame);
|
|
ExpectStreams(kDeltaFrame, kNumberOfSimulcastStreams);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestPaddingAllStreams() {
|
|
// We should always encode the base layer.
|
|
encoder_->SetRates(kMinBitrates[0] - 1, 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 1);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 1);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestPaddingTwoStreams() {
|
|
// We have just enough to get only the first stream and padding for two.
|
|
encoder_->SetRates(kMinBitrates[0], 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 1);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 1);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestPaddingTwoStreamsOneMaxedOut() {
|
|
// We are just below limit of sending second stream, so we should get
|
|
// the first stream maxed out (at |maxBitrate|), and padding for two.
|
|
encoder_->SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 1);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 1);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestPaddingOneStream() {
|
|
// We have just enough to send two streams, so padding for one stream.
|
|
encoder_->SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 2);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 2);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestPaddingOneStreamTwoMaxedOut() {
|
|
// We are just below limit of sending third stream, so we should get
|
|
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
|
|
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
|
|
kMinBitrates[2] - 1, 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 2);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 2);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestSendAllStreams() {
|
|
// We have just enough to send all streams.
|
|
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
|
|
kMinBitrates[2], 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 3);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 3);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestDisablingStreams() {
|
|
// We should get three media streams.
|
|
encoder_->SetRates(kMaxBitrates[0] + kMaxBitrates[1] +
|
|
kMaxBitrates[2], 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
ExpectStreams(kKeyFrame, 3);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
ExpectStreams(kDeltaFrame, 3);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
// We should only get two streams and padding for one.
|
|
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
|
|
kMinBitrates[2] / 2, 30);
|
|
ExpectStreams(kDeltaFrame, 2);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
// We should only get the first stream and padding for two.
|
|
encoder_->SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
|
|
ExpectStreams(kDeltaFrame, 1);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
// We don't have enough bitrate for the thumbnail stream, but we should get
|
|
// it anyway with current configuration.
|
|
encoder_->SetRates(kTargetBitrates[0] - 1, 30);
|
|
ExpectStreams(kDeltaFrame, 1);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
// We should only get two streams and padding for one.
|
|
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
|
|
kMinBitrates[2] / 2, 30);
|
|
// We get a key frame because a new stream is being enabled.
|
|
ExpectStreams(kKeyFrame, 2);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
// We should get all three streams.
|
|
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
|
|
kTargetBitrates[2], 30);
|
|
// We get a key frame because a new stream is being enabled.
|
|
ExpectStreams(kKeyFrame, 3);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void SwitchingToOneStream(int width, int height) {
|
|
// Disable all streams except the last and set the bitrate of the last to
|
|
// 100 kbps. This verifies the way GTP switches to screenshare mode.
|
|
settings_.codecSpecific.VP8.numberOfTemporalLayers = 1;
|
|
settings_.maxBitrate = 100;
|
|
settings_.startBitrate = 100;
|
|
settings_.width = width;
|
|
settings_.height = height;
|
|
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
|
|
settings_.simulcastStream[i].maxBitrate = 0;
|
|
settings_.simulcastStream[i].width = settings_.width;
|
|
settings_.simulcastStream[i].height = settings_.height;
|
|
}
|
|
// Setting input image to new resolution.
|
|
int half_width = (settings_.width + 1) / 2;
|
|
input_frame_.CreateEmptyFrame(settings_.width, settings_.height,
|
|
settings_.width, half_width, half_width);
|
|
memset(input_frame_.buffer(kYPlane), 0,
|
|
input_frame_.allocated_size(kYPlane));
|
|
memset(input_frame_.buffer(kUPlane), 0,
|
|
input_frame_.allocated_size(kUPlane));
|
|
memset(input_frame_.buffer(kVPlane), 0,
|
|
input_frame_.allocated_size(kVPlane));
|
|
|
|
// The for loop above did not set the bitrate of the highest layer.
|
|
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].
|
|
maxBitrate = 0;
|
|
// The highest layer has to correspond to the non-simulcast resolution.
|
|
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].
|
|
width = settings_.width;
|
|
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].
|
|
height = settings_.height;
|
|
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
|
|
|
// Encode one frame and verify.
|
|
encoder_->SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
|
|
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
|
|
kDeltaFrame);
|
|
EXPECT_CALL(encoder_callback_, Encoded(
|
|
AllOf(Field(&EncodedImage::_frameType, kKeyFrame),
|
|
Field(&EncodedImage::_encodedWidth, width),
|
|
Field(&EncodedImage::_encodedHeight, height)), _, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(0));
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
|
|
// Switch back.
|
|
DefaultSettings(&settings_, kDefaultTemporalLayerProfile);
|
|
// Start at the lowest bitrate for enabling base stream.
|
|
settings_.startBitrate = kMinBitrates[0];
|
|
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
|
encoder_->SetRates(settings_.startBitrate, 30);
|
|
ExpectStreams(kKeyFrame, 1);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
|
|
}
|
|
|
|
void TestSwitchingToOneStream() {
|
|
SwitchingToOneStream(1024, 768);
|
|
}
|
|
|
|
void TestSwitchingToOneOddStream() {
|
|
SwitchingToOneStream(1023, 769);
|
|
}
|
|
|
|
void TestRPSIEncoder() {
|
|
Vp8TestEncodedImageCallback encoder_callback;
|
|
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
|
|
|
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
|
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
int picture_id = -1;
|
|
int temporal_layer = -1;
|
|
bool layer_sync = false;
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
EXPECT_EQ(0, temporal_layer);
|
|
EXPECT_TRUE(layer_sync);
|
|
int key_frame_picture_id = picture_id;
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
EXPECT_EQ(2, temporal_layer);
|
|
EXPECT_TRUE(layer_sync);
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
EXPECT_EQ(1, temporal_layer);
|
|
EXPECT_TRUE(layer_sync);
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
EXPECT_EQ(2, temporal_layer);
|
|
EXPECT_FALSE(layer_sync);
|
|
|
|
CodecSpecificInfo codec_specific;
|
|
codec_specific.codecType = kVideoCodecVP8;
|
|
codec_specific.codecSpecific.VP8.hasReceivedRPSI = true;
|
|
|
|
// Must match last key frame to trigger.
|
|
codec_specific.codecSpecific.VP8.pictureIdRPSI = key_frame_picture_id;
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, &codec_specific, NULL));
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
|
|
EXPECT_EQ(0, temporal_layer);
|
|
EXPECT_TRUE(layer_sync);
|
|
|
|
// Must match last key frame to trigger, test bad id.
|
|
codec_specific.codecSpecific.VP8.pictureIdRPSI = key_frame_picture_id + 17;
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, &codec_specific, NULL));
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
|
|
EXPECT_EQ(2, temporal_layer);
|
|
// The previous frame was a base layer sync (since it was a frame that
|
|
// only predicts from key frame and hence resets the temporal pattern),
|
|
// so this frame (the next one) must have |layer_sync| set to true.
|
|
EXPECT_TRUE(layer_sync);
|
|
}
|
|
|
|
void TestRPSIEncodeDecode() {
|
|
Vp8TestEncodedImageCallback encoder_callback;
|
|
Vp8TestDecodedImageCallback decoder_callback;
|
|
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
|
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
|
|
|
|
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
|
|
|
// Set color.
|
|
int plane_offset[kNumOfPlanes];
|
|
plane_offset[kYPlane] = kColorY;
|
|
plane_offset[kUPlane] = kColorU;
|
|
plane_offset[kVPlane] = kColorV;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
int picture_id = -1;
|
|
int temporal_layer = -1;
|
|
bool layer_sync = false;
|
|
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
|
|
&layer_sync, 0);
|
|
EXPECT_EQ(0, temporal_layer);
|
|
EXPECT_TRUE(layer_sync);
|
|
int key_frame_picture_id = picture_id;
|
|
|
|
// Change color.
|
|
plane_offset[kYPlane] += 1;
|
|
plane_offset[kUPlane] += 1;
|
|
plane_offset[kVPlane] += 1;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
|
|
// Change color.
|
|
plane_offset[kYPlane] += 1;
|
|
plane_offset[kUPlane] += 1;
|
|
plane_offset[kVPlane] += 1;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
|
|
// Change color.
|
|
plane_offset[kYPlane] += 1;
|
|
plane_offset[kUPlane] += 1;
|
|
plane_offset[kVPlane] += 1;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
|
|
CodecSpecificInfo codec_specific;
|
|
codec_specific.codecType = kVideoCodecVP8;
|
|
codec_specific.codecSpecific.VP8.hasReceivedRPSI = true;
|
|
// Must match last key frame to trigger.
|
|
codec_specific.codecSpecific.VP8.pictureIdRPSI = key_frame_picture_id;
|
|
|
|
// Change color back to original.
|
|
plane_offset[kYPlane] = kColorY;
|
|
plane_offset[kUPlane] = kColorU;
|
|
plane_offset[kVPlane] = kColorV;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, &codec_specific, NULL));
|
|
|
|
EncodedImage encoded_frame;
|
|
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
|
|
decoder_->Decode(encoded_frame, false, NULL);
|
|
encoder_callback.GetLastEncodedFrame(&encoded_frame);
|
|
decoder_->Decode(encoded_frame, false, NULL);
|
|
EXPECT_EQ(2, decoder_callback.DecodedFrames());
|
|
}
|
|
|
|
// Test the layer pattern and sync flag for various spatial-temporal patterns.
|
|
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
|
|
// temporal_layer id and layer_sync is expected for all streams.
|
|
void TestSaptioTemporalLayers333PatternEncoder() {
|
|
Vp8TestEncodedImageCallback encoder_callback;
|
|
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
|
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
|
|
|
int expected_temporal_idx[3] = { -1, -1, -1};
|
|
bool expected_layer_sync[3] = {false, false, false};
|
|
|
|
// First frame: #0.
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #1.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #2.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #3.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #4.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #5.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
}
|
|
|
|
// Test the layer pattern and sync flag for various spatial-temporal patterns.
|
|
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
|
|
// 1 temporal layer for highest resolution.
|
|
// For this profile, we expect the temporal index pattern to be:
|
|
// 1st stream: 0, 2, 1, 2, ....
|
|
// 2nd stream: 0, 1, 0, 1, ...
|
|
// 3rd stream: -1, -1, -1, -1, ....
|
|
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
|
|
// should always have temporal layer idx set to kNoTemporalIdx = -1.
|
|
// Since CodecSpecificInfoVP8.temporalIdx is uint8, this will wrap to 255.
|
|
// TODO(marpan): Although this seems safe for now, we should fix this.
|
|
void TestSpatioTemporalLayers321PatternEncoder() {
|
|
int temporal_layer_profile[3] = {3, 2, 1};
|
|
SetUpCodec(temporal_layer_profile);
|
|
Vp8TestEncodedImageCallback encoder_callback;
|
|
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
|
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
|
|
|
int expected_temporal_idx[3] = { -1, -1, -1};
|
|
bool expected_layer_sync[3] = {false, false, false};
|
|
|
|
// First frame: #0.
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #1.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #2.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #3.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #4.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
|
|
// Next frame: #5.
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
|
|
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
|
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
|
|
expected_temporal_idx,
|
|
expected_layer_sync,
|
|
3);
|
|
}
|
|
|
|
void TestStrideEncodeDecode() {
|
|
Vp8TestEncodedImageCallback encoder_callback;
|
|
Vp8TestDecodedImageCallback decoder_callback;
|
|
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
|
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
|
|
|
|
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
|
// Setting two (possibly) problematic use cases for stride:
|
|
// 1. stride > width 2. stride_y != stride_uv/2
|
|
int stride_y = kDefaultWidth + 20;
|
|
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
|
|
input_frame_.CreateEmptyFrame(kDefaultWidth, kDefaultHeight,
|
|
stride_y, stride_uv, stride_uv);
|
|
// Set color.
|
|
int plane_offset[kNumOfPlanes];
|
|
plane_offset[kYPlane] = kColorY;
|
|
plane_offset[kUPlane] = kColorU;
|
|
plane_offset[kVPlane] = kColorV;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
|
|
// Change color.
|
|
plane_offset[kYPlane] += 1;
|
|
plane_offset[kUPlane] += 1;
|
|
plane_offset[kVPlane] += 1;
|
|
CreateImage(&input_frame_, plane_offset);
|
|
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
|
|
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
|
|
|
|
EncodedImage encoded_frame;
|
|
// Only encoding one frame - so will be a key frame.
|
|
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
|
|
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL));
|
|
encoder_callback.GetLastEncodedFrame(&encoded_frame);
|
|
decoder_->Decode(encoded_frame, false, NULL);
|
|
EXPECT_EQ(2, decoder_callback.DecodedFrames());
|
|
}
|
|
|
|
void TestSkipEncodingUnusedStreams() {
|
|
SkipEncodingUnusedStreamsTest test;
|
|
std::vector<unsigned int> configured_bitrate =
|
|
test.RunTest(encoder_.get(),
|
|
&settings_,
|
|
1); // Target bit rate 1, to force all streams but the
|
|
// base one to be exceeding bandwidth constraints.
|
|
EXPECT_EQ(static_cast<size_t>(kNumberOfSimulcastStreams),
|
|
configured_bitrate.size());
|
|
|
|
unsigned int min_bitrate =
|
|
std::max(settings_.simulcastStream[0].minBitrate, settings_.minBitrate);
|
|
int stream = 0;
|
|
for (std::vector<unsigned int>::const_iterator it =
|
|
configured_bitrate.begin();
|
|
it != configured_bitrate.end();
|
|
++it) {
|
|
if (stream == 0) {
|
|
EXPECT_EQ(min_bitrate, *it);
|
|
} else {
|
|
EXPECT_EQ(0u, *it);
|
|
}
|
|
++stream;
|
|
}
|
|
}
|
|
|
|
scoped_ptr<VP8Encoder> encoder_;
|
|
MockEncodedImageCallback encoder_callback_;
|
|
scoped_ptr<VP8Decoder> decoder_;
|
|
MockDecodedImageCallback decoder_callback_;
|
|
VideoCodec settings_;
|
|
I420VideoFrame input_frame_;
|
|
};
|
|
|
|
} // namespace testing
|
|
} // namespace webrtc
|
|
|
|
#endif // WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
|