The ERLE is used to estimate residual echo for echo suppression. The ERLE is reduced during far-end offset to avoid echo leakage. When there is a strong near-end present this can cause unnecessary transparency loss. This change adds an ERLE estimation that does not compensate for onsets and uses it for residual echo estimation when the suppressor considers the near-end to be dominant. Bug: webrtc:12686 Change-Id: Ida78eeacf1f95c6e62403f86ba3f2ff055898a84 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215323 Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org> Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33786}
366 lines
13 KiB
C++
366 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/reverb_model.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr float kDefaultTransparentModeGain = 0.01f;
|
|
|
|
float GetTransparentModeGain() {
|
|
return kDefaultTransparentModeGain;
|
|
}
|
|
|
|
float GetEarlyReflectionsDefaultModeGain(
|
|
const EchoCanceller3Config::EpStrength& config) {
|
|
if (field_trial::IsEnabled("WebRTC-Aec3UseLowEarlyReflectionsDefaultGain")) {
|
|
return 0.1f;
|
|
}
|
|
return config.default_gain;
|
|
}
|
|
|
|
float GetLateReflectionsDefaultModeGain(
|
|
const EchoCanceller3Config::EpStrength& config) {
|
|
if (field_trial::IsEnabled("WebRTC-Aec3UseLowLateReflectionsDefaultGain")) {
|
|
return 0.1f;
|
|
}
|
|
return config.default_gain;
|
|
}
|
|
|
|
bool UseErleOnsetCompensationInDominantNearend(
|
|
const EchoCanceller3Config::EpStrength& config) {
|
|
return config.erle_onset_compensation_in_dominant_nearend ||
|
|
field_trial::IsEnabled(
|
|
"WebRTC-Aec3UseErleOnsetCompensationInDominantNearend");
|
|
}
|
|
|
|
// Computes the indexes that will be used for computing spectral power over
|
|
// the blocks surrounding the delay.
|
|
void GetRenderIndexesToAnalyze(
|
|
const SpectrumBuffer& spectrum_buffer,
|
|
const EchoCanceller3Config::EchoModel& echo_model,
|
|
int filter_delay_blocks,
|
|
int* idx_start,
|
|
int* idx_stop) {
|
|
RTC_DCHECK(idx_start);
|
|
RTC_DCHECK(idx_stop);
|
|
size_t window_start;
|
|
size_t window_end;
|
|
window_start =
|
|
std::max(0, filter_delay_blocks -
|
|
static_cast<int>(echo_model.render_pre_window_size));
|
|
window_end = filter_delay_blocks +
|
|
static_cast<int>(echo_model.render_post_window_size);
|
|
*idx_start = spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_start);
|
|
*idx_stop = spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_end + 1);
|
|
}
|
|
|
|
// Estimates the residual echo power based on the echo return loss enhancement
|
|
// (ERLE) and the linear power estimate.
|
|
void LinearEstimate(
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> S2_linear,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2) {
|
|
RTC_DCHECK_EQ(S2_linear.size(), erle.size());
|
|
RTC_DCHECK_EQ(S2_linear.size(), R2.size());
|
|
|
|
const size_t num_capture_channels = R2.size();
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
RTC_DCHECK_LT(0.f, erle[ch][k]);
|
|
R2[ch][k] = S2_linear[ch][k] / erle[ch][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Estimates the residual echo power based on the estimate of the echo path
|
|
// gain.
|
|
void NonLinearEstimate(
|
|
float echo_path_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& X2,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2) {
|
|
const size_t num_capture_channels = R2.size();
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
R2[ch][k] = X2[k] * echo_path_gain;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Applies a soft noise gate to the echo generating power.
|
|
void ApplyNoiseGate(const EchoCanceller3Config::EchoModel& config,
|
|
rtc::ArrayView<float, kFftLengthBy2Plus1> X2) {
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
if (config.noise_gate_power > X2[k]) {
|
|
X2[k] = std::max(0.f, X2[k] - config.noise_gate_slope *
|
|
(config.noise_gate_power - X2[k]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Estimates the echo generating signal power as gated maximal power over a
|
|
// time window.
|
|
void EchoGeneratingPower(size_t num_render_channels,
|
|
const SpectrumBuffer& spectrum_buffer,
|
|
const EchoCanceller3Config::EchoModel& echo_model,
|
|
int filter_delay_blocks,
|
|
rtc::ArrayView<float, kFftLengthBy2Plus1> X2) {
|
|
int idx_stop;
|
|
int idx_start;
|
|
GetRenderIndexesToAnalyze(spectrum_buffer, echo_model, filter_delay_blocks,
|
|
&idx_start, &idx_stop);
|
|
|
|
std::fill(X2.begin(), X2.end(), 0.f);
|
|
if (num_render_channels == 1) {
|
|
for (int k = idx_start; k != idx_stop; k = spectrum_buffer.IncIndex(k)) {
|
|
for (size_t j = 0; j < kFftLengthBy2Plus1; ++j) {
|
|
X2[j] = std::max(X2[j], spectrum_buffer.buffer[k][/*channel=*/0][j]);
|
|
}
|
|
}
|
|
} else {
|
|
for (int k = idx_start; k != idx_stop; k = spectrum_buffer.IncIndex(k)) {
|
|
std::array<float, kFftLengthBy2Plus1> render_power;
|
|
render_power.fill(0.f);
|
|
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
|
const auto& channel_power = spectrum_buffer.buffer[k][ch];
|
|
for (size_t j = 0; j < kFftLengthBy2Plus1; ++j) {
|
|
render_power[j] += channel_power[j];
|
|
}
|
|
}
|
|
for (size_t j = 0; j < kFftLengthBy2Plus1; ++j) {
|
|
X2[j] = std::max(X2[j], render_power[j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config,
|
|
size_t num_render_channels)
|
|
: config_(config),
|
|
num_render_channels_(num_render_channels),
|
|
early_reflections_transparent_mode_gain_(GetTransparentModeGain()),
|
|
late_reflections_transparent_mode_gain_(GetTransparentModeGain()),
|
|
early_reflections_general_gain_(
|
|
GetEarlyReflectionsDefaultModeGain(config_.ep_strength)),
|
|
late_reflections_general_gain_(
|
|
GetLateReflectionsDefaultModeGain(config_.ep_strength)),
|
|
erle_onset_compensation_in_dominant_nearend_(
|
|
UseErleOnsetCompensationInDominantNearend(config_.ep_strength)) {
|
|
Reset();
|
|
}
|
|
|
|
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
|
|
|
void ResidualEchoEstimator::Estimate(
|
|
const AecState& aec_state,
|
|
const RenderBuffer& render_buffer,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> S2_linear,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
|
|
bool dominant_nearend,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2) {
|
|
RTC_DCHECK_EQ(R2.size(), Y2.size());
|
|
RTC_DCHECK_EQ(R2.size(), S2_linear.size());
|
|
|
|
const size_t num_capture_channels = R2.size();
|
|
|
|
// Estimate the power of the stationary noise in the render signal.
|
|
UpdateRenderNoisePower(render_buffer);
|
|
|
|
// Estimate the residual echo power.
|
|
if (aec_state.UsableLinearEstimate()) {
|
|
// When there is saturated echo, assume the same spectral content as is
|
|
// present in the microphone signal.
|
|
if (aec_state.SaturatedEcho()) {
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
std::copy(Y2[ch].begin(), Y2[ch].end(), R2[ch].begin());
|
|
}
|
|
} else {
|
|
const bool onset_compensated =
|
|
erle_onset_compensation_in_dominant_nearend_ || !dominant_nearend;
|
|
LinearEstimate(S2_linear, aec_state.Erle(onset_compensated), R2);
|
|
}
|
|
|
|
AddReverb(ReverbType::kLinear, aec_state, render_buffer, R2);
|
|
} else {
|
|
const float echo_path_gain =
|
|
GetEchoPathGain(aec_state, /*gain_for_early_reflections=*/true);
|
|
|
|
// When there is saturated echo, assume the same spectral content as is
|
|
// present in the microphone signal.
|
|
if (aec_state.SaturatedEcho()) {
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
std::copy(Y2[ch].begin(), Y2[ch].end(), R2[ch].begin());
|
|
}
|
|
} else {
|
|
// Estimate the echo generating signal power.
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
EchoGeneratingPower(num_render_channels_,
|
|
render_buffer.GetSpectrumBuffer(), config_.echo_model,
|
|
aec_state.MinDirectPathFilterDelay(), X2);
|
|
if (!aec_state.UseStationarityProperties()) {
|
|
ApplyNoiseGate(config_.echo_model, X2);
|
|
}
|
|
|
|
// Subtract the stationary noise power to avoid stationary noise causing
|
|
// excessive echo suppression.
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
X2[k] -= config_.echo_model.stationary_gate_slope * X2_noise_floor_[k];
|
|
X2[k] = std::max(0.f, X2[k]);
|
|
}
|
|
|
|
NonLinearEstimate(echo_path_gain, X2, R2);
|
|
}
|
|
|
|
if (config_.echo_model.model_reverb_in_nonlinear_mode &&
|
|
!aec_state.TransparentModeActive()) {
|
|
AddReverb(ReverbType::kNonLinear, aec_state, render_buffer, R2);
|
|
}
|
|
}
|
|
|
|
if (aec_state.UseStationarityProperties()) {
|
|
// Scale the echo according to echo audibility.
|
|
std::array<float, kFftLengthBy2Plus1> residual_scaling;
|
|
aec_state.GetResidualEchoScaling(residual_scaling);
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
R2[ch][k] *= residual_scaling[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::Reset() {
|
|
echo_reverb_.Reset();
|
|
X2_noise_floor_counter_.fill(config_.echo_model.noise_floor_hold);
|
|
X2_noise_floor_.fill(config_.echo_model.min_noise_floor_power);
|
|
}
|
|
|
|
void ResidualEchoEstimator::UpdateRenderNoisePower(
|
|
const RenderBuffer& render_buffer) {
|
|
std::array<float, kFftLengthBy2Plus1> render_power_data;
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> X2 =
|
|
render_buffer.Spectrum(0);
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> render_power =
|
|
X2[/*channel=*/0];
|
|
if (num_render_channels_ > 1) {
|
|
render_power_data.fill(0.f);
|
|
for (size_t ch = 0; ch < num_render_channels_; ++ch) {
|
|
const auto& channel_power = X2[ch];
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
render_power_data[k] += channel_power[k];
|
|
}
|
|
}
|
|
render_power = render_power_data;
|
|
}
|
|
|
|
// Estimate the stationary noise power in a minimum statistics manner.
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
// Decrease rapidly.
|
|
if (render_power[k] < X2_noise_floor_[k]) {
|
|
X2_noise_floor_[k] = render_power[k];
|
|
X2_noise_floor_counter_[k] = 0;
|
|
} else {
|
|
// Increase in a delayed, leaky manner.
|
|
if (X2_noise_floor_counter_[k] >=
|
|
static_cast<int>(config_.echo_model.noise_floor_hold)) {
|
|
X2_noise_floor_[k] = std::max(X2_noise_floor_[k] * 1.1f,
|
|
config_.echo_model.min_noise_floor_power);
|
|
} else {
|
|
++X2_noise_floor_counter_[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds the estimated power of the reverb to the residual echo power.
|
|
void ResidualEchoEstimator::AddReverb(
|
|
ReverbType reverb_type,
|
|
const AecState& aec_state,
|
|
const RenderBuffer& render_buffer,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2) {
|
|
const size_t num_capture_channels = R2.size();
|
|
|
|
// Choose reverb partition based on what type of echo power model is used.
|
|
const size_t first_reverb_partition =
|
|
reverb_type == ReverbType::kLinear
|
|
? aec_state.FilterLengthBlocks() + 1
|
|
: aec_state.MinDirectPathFilterDelay() + 1;
|
|
|
|
// Compute render power for the reverb.
|
|
std::array<float, kFftLengthBy2Plus1> render_power_data;
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> X2 =
|
|
render_buffer.Spectrum(first_reverb_partition);
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> render_power =
|
|
X2[/*channel=*/0];
|
|
if (num_render_channels_ > 1) {
|
|
render_power_data.fill(0.f);
|
|
for (size_t ch = 0; ch < num_render_channels_; ++ch) {
|
|
const auto& channel_power = X2[ch];
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
render_power_data[k] += channel_power[k];
|
|
}
|
|
}
|
|
render_power = render_power_data;
|
|
}
|
|
|
|
// Update the reverb estimate.
|
|
if (reverb_type == ReverbType::kLinear) {
|
|
echo_reverb_.UpdateReverb(render_power,
|
|
aec_state.GetReverbFrequencyResponse(),
|
|
aec_state.ReverbDecay());
|
|
} else {
|
|
const float echo_path_gain =
|
|
GetEchoPathGain(aec_state, /*gain_for_early_reflections=*/false);
|
|
echo_reverb_.UpdateReverbNoFreqShaping(render_power, echo_path_gain,
|
|
aec_state.ReverbDecay());
|
|
}
|
|
|
|
// Add the reverb power.
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> reverb_power =
|
|
echo_reverb_.reverb();
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
R2[ch][k] += reverb_power[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Chooses the echo path gain to use.
|
|
float ResidualEchoEstimator::GetEchoPathGain(
|
|
const AecState& aec_state,
|
|
bool gain_for_early_reflections) const {
|
|
float gain_amplitude;
|
|
if (aec_state.TransparentModeActive()) {
|
|
gain_amplitude = gain_for_early_reflections
|
|
? early_reflections_transparent_mode_gain_
|
|
: late_reflections_transparent_mode_gain_;
|
|
} else {
|
|
gain_amplitude = gain_for_early_reflections
|
|
? early_reflections_general_gain_
|
|
: late_reflections_general_gain_;
|
|
}
|
|
return gain_amplitude * gain_amplitude;
|
|
}
|
|
|
|
} // namespace webrtc
|