The ERLE is used to estimate residual echo for echo suppression. The ERLE is reduced during far-end offset to avoid echo leakage. When there is a strong near-end present this can cause unnecessary transparency loss. This change adds an ERLE estimation that does not compensate for onsets and uses it for residual echo estimation when the suppressor considers the near-end to be dominant. Bug: webrtc:12686 Change-Id: Ida78eeacf1f95c6e62403f86ba3f2ff055898a84 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215323 Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org> Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33786}
241 lines
8.3 KiB
C++
241 lines
8.3 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/subband_erle_estimator.h"
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
constexpr float kX2BandEnergyThreshold = 44015068.0f;
|
|
constexpr int kBlocksToHoldErle = 100;
|
|
constexpr int kBlocksForOnsetDetection = kBlocksToHoldErle + 150;
|
|
constexpr int kPointsToAccumulate = 6;
|
|
|
|
std::array<float, kFftLengthBy2Plus1> SetMaxErleBands(float max_erle_l,
|
|
float max_erle_h) {
|
|
std::array<float, kFftLengthBy2Plus1> max_erle;
|
|
std::fill(max_erle.begin(), max_erle.begin() + kFftLengthBy2 / 2, max_erle_l);
|
|
std::fill(max_erle.begin() + kFftLengthBy2 / 2, max_erle.end(), max_erle_h);
|
|
return max_erle;
|
|
}
|
|
|
|
bool EnableMinErleDuringOnsets() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3MinErleDuringOnsetsKillSwitch");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SubbandErleEstimator::SubbandErleEstimator(const EchoCanceller3Config& config,
|
|
size_t num_capture_channels)
|
|
: use_onset_detection_(config.erle.onset_detection),
|
|
min_erle_(config.erle.min),
|
|
max_erle_(SetMaxErleBands(config.erle.max_l, config.erle.max_h)),
|
|
use_min_erle_during_onsets_(EnableMinErleDuringOnsets()),
|
|
accum_spectra_(num_capture_channels),
|
|
erle_(num_capture_channels),
|
|
erle_onset_compensated_(num_capture_channels),
|
|
erle_during_onsets_(num_capture_channels),
|
|
coming_onset_(num_capture_channels),
|
|
hold_counters_(num_capture_channels) {
|
|
Reset();
|
|
}
|
|
|
|
SubbandErleEstimator::~SubbandErleEstimator() = default;
|
|
|
|
void SubbandErleEstimator::Reset() {
|
|
const size_t num_capture_channels = erle_.size();
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
erle_[ch].fill(min_erle_);
|
|
erle_onset_compensated_[ch].fill(min_erle_);
|
|
erle_during_onsets_[ch].fill(min_erle_);
|
|
coming_onset_[ch].fill(true);
|
|
hold_counters_[ch].fill(0);
|
|
}
|
|
ResetAccumulatedSpectra();
|
|
}
|
|
|
|
void SubbandErleEstimator::Update(
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> X2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
|
|
const std::vector<bool>& converged_filters) {
|
|
UpdateAccumulatedSpectra(X2, Y2, E2, converged_filters);
|
|
UpdateBands(converged_filters);
|
|
|
|
if (use_onset_detection_) {
|
|
DecreaseErlePerBandForLowRenderSignals();
|
|
}
|
|
|
|
const size_t num_capture_channels = erle_.size();
|
|
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
|
|
auto& erle = erle_[ch];
|
|
erle[0] = erle[1];
|
|
erle[kFftLengthBy2] = erle[kFftLengthBy2 - 1];
|
|
|
|
auto& erle_oc = erle_onset_compensated_[ch];
|
|
erle_oc[0] = erle_oc[1];
|
|
erle_oc[kFftLengthBy2] = erle_oc[kFftLengthBy2 - 1];
|
|
}
|
|
}
|
|
|
|
void SubbandErleEstimator::Dump(
|
|
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
|
|
data_dumper->DumpRaw("aec3_erle_onset", ErleDuringOnsets()[0]);
|
|
}
|
|
|
|
void SubbandErleEstimator::UpdateBands(
|
|
const std::vector<bool>& converged_filters) {
|
|
const int num_capture_channels = static_cast<int>(accum_spectra_.Y2.size());
|
|
for (int ch = 0; ch < num_capture_channels; ++ch) {
|
|
// Note that the use of the converged_filter flag already imposed
|
|
// a minimum of the erle that can be estimated as that flag would
|
|
// be false if the filter is performing poorly.
|
|
if (!converged_filters[ch]) {
|
|
continue;
|
|
}
|
|
|
|
if (accum_spectra_.num_points[ch] != kPointsToAccumulate) {
|
|
continue;
|
|
}
|
|
|
|
std::array<float, kFftLengthBy2> new_erle;
|
|
std::array<bool, kFftLengthBy2> is_erle_updated;
|
|
is_erle_updated.fill(false);
|
|
|
|
for (size_t k = 1; k < kFftLengthBy2; ++k) {
|
|
if (accum_spectra_.E2[ch][k] > 0.f) {
|
|
new_erle[k] = accum_spectra_.Y2[ch][k] / accum_spectra_.E2[ch][k];
|
|
is_erle_updated[k] = true;
|
|
}
|
|
}
|
|
|
|
if (use_onset_detection_) {
|
|
for (size_t k = 1; k < kFftLengthBy2; ++k) {
|
|
if (is_erle_updated[k] && !accum_spectra_.low_render_energy[ch][k]) {
|
|
if (coming_onset_[ch][k]) {
|
|
coming_onset_[ch][k] = false;
|
|
if (!use_min_erle_during_onsets_) {
|
|
float alpha =
|
|
new_erle[k] < erle_during_onsets_[ch][k] ? 0.3f : 0.15f;
|
|
erle_during_onsets_[ch][k] = rtc::SafeClamp(
|
|
erle_during_onsets_[ch][k] +
|
|
alpha * (new_erle[k] - erle_during_onsets_[ch][k]),
|
|
min_erle_, max_erle_[k]);
|
|
}
|
|
}
|
|
hold_counters_[ch][k] = kBlocksForOnsetDetection;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto update_erle_band = [](float& erle, float new_erle,
|
|
bool low_render_energy, float min_erle,
|
|
float max_erle) {
|
|
float alpha = 0.05f;
|
|
if (new_erle < erle) {
|
|
alpha = low_render_energy ? 0.f : 0.1f;
|
|
}
|
|
erle =
|
|
rtc::SafeClamp(erle + alpha * (new_erle - erle), min_erle, max_erle);
|
|
};
|
|
|
|
for (size_t k = 1; k < kFftLengthBy2; ++k) {
|
|
if (is_erle_updated[k]) {
|
|
const bool low_render_energy = accum_spectra_.low_render_energy[ch][k];
|
|
update_erle_band(erle_[ch][k], new_erle[k], low_render_energy,
|
|
min_erle_, max_erle_[k]);
|
|
if (use_onset_detection_) {
|
|
update_erle_band(erle_onset_compensated_[ch][k], new_erle[k],
|
|
low_render_energy, min_erle_, max_erle_[k]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SubbandErleEstimator::DecreaseErlePerBandForLowRenderSignals() {
|
|
const int num_capture_channels = static_cast<int>(accum_spectra_.Y2.size());
|
|
for (int ch = 0; ch < num_capture_channels; ++ch) {
|
|
for (size_t k = 1; k < kFftLengthBy2; ++k) {
|
|
--hold_counters_[ch][k];
|
|
if (hold_counters_[ch][k] <=
|
|
(kBlocksForOnsetDetection - kBlocksToHoldErle)) {
|
|
if (erle_onset_compensated_[ch][k] > erle_during_onsets_[ch][k]) {
|
|
erle_onset_compensated_[ch][k] =
|
|
std::max(erle_during_onsets_[ch][k],
|
|
0.97f * erle_onset_compensated_[ch][k]);
|
|
RTC_DCHECK_LE(min_erle_, erle_onset_compensated_[ch][k]);
|
|
}
|
|
if (hold_counters_[ch][k] <= 0) {
|
|
coming_onset_[ch][k] = true;
|
|
hold_counters_[ch][k] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SubbandErleEstimator::ResetAccumulatedSpectra() {
|
|
for (size_t ch = 0; ch < erle_during_onsets_.size(); ++ch) {
|
|
accum_spectra_.Y2[ch].fill(0.f);
|
|
accum_spectra_.E2[ch].fill(0.f);
|
|
accum_spectra_.num_points[ch] = 0;
|
|
accum_spectra_.low_render_energy[ch].fill(false);
|
|
}
|
|
}
|
|
|
|
void SubbandErleEstimator::UpdateAccumulatedSpectra(
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> X2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
|
|
const std::vector<bool>& converged_filters) {
|
|
auto& st = accum_spectra_;
|
|
RTC_DCHECK_EQ(st.E2.size(), E2.size());
|
|
RTC_DCHECK_EQ(st.E2.size(), E2.size());
|
|
const int num_capture_channels = static_cast<int>(Y2.size());
|
|
for (int ch = 0; ch < num_capture_channels; ++ch) {
|
|
// Note that the use of the converged_filter flag already imposed
|
|
// a minimum of the erle that can be estimated as that flag would
|
|
// be false if the filter is performing poorly.
|
|
if (!converged_filters[ch]) {
|
|
continue;
|
|
}
|
|
|
|
if (st.num_points[ch] == kPointsToAccumulate) {
|
|
st.num_points[ch] = 0;
|
|
st.Y2[ch].fill(0.f);
|
|
st.E2[ch].fill(0.f);
|
|
st.low_render_energy[ch].fill(false);
|
|
}
|
|
|
|
std::transform(Y2[ch].begin(), Y2[ch].end(), st.Y2[ch].begin(),
|
|
st.Y2[ch].begin(), std::plus<float>());
|
|
std::transform(E2[ch].begin(), E2[ch].end(), st.E2[ch].begin(),
|
|
st.E2[ch].begin(), std::plus<float>());
|
|
|
|
for (size_t k = 0; k < X2.size(); ++k) {
|
|
st.low_render_energy[ch][k] =
|
|
st.low_render_energy[ch][k] || X2[k] < kX2BandEnergyThreshold;
|
|
}
|
|
|
|
++st.num_points[ch];
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|