Files
platform-external-webrtc/modules/audio_processing/agc2/rnn_vad/rnn_fc.cc
Alessio Bazzica e8ee462681 RNN VAD: FC layer simplified
The implementations for the fully connected layer can be simlpified by
using `VectorMath:DotProduct()`. In this way, it is also possible to
remove (nearly) duplicated SIMD code, reduce the binary size and more
easily maintain the code.

This CL also forces unoptimized code for the output layer of the VAD,
which is a FC 24x1 layer. A slight improvement of the realtime has
been measured (delta ~ +5x).

Bug: webrtc:10480
Change-Id: Iee93bd59f7905ebf96275dbbfeb3c921baf4e8db
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/195580
Commit-Queue: Alessio Bazzica <alessiob@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32806}
2020-12-09 00:04:50 +00:00

106 lines
3.7 KiB
C++

/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <numeric>
#include "modules/audio_processing/agc2/rnn_vad/rnn_fc.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "third_party/rnnoise/src/rnn_activations.h"
#include "third_party/rnnoise/src/rnn_vad_weights.h"
namespace webrtc {
namespace rnn_vad {
namespace {
std::vector<float> GetScaledParams(rtc::ArrayView<const int8_t> params) {
std::vector<float> scaled_params(params.size());
std::transform(params.begin(), params.end(), scaled_params.begin(),
[](int8_t x) -> float {
return ::rnnoise::kWeightsScale * static_cast<float>(x);
});
return scaled_params;
}
// TODO(bugs.chromium.org/10480): Hard-code optimized layout and remove this
// function to improve setup time.
// Casts and scales |weights| and re-arranges the layout.
std::vector<float> PreprocessWeights(rtc::ArrayView<const int8_t> weights,
int output_size) {
if (output_size == 1) {
return GetScaledParams(weights);
}
// Transpose, scale and cast.
const int input_size = rtc::CheckedDivExact(
rtc::dchecked_cast<int>(weights.size()), output_size);
std::vector<float> w(weights.size());
for (int o = 0; o < output_size; ++o) {
for (int i = 0; i < input_size; ++i) {
w[o * input_size + i] = rnnoise::kWeightsScale *
static_cast<float>(weights[i * output_size + o]);
}
}
return w;
}
rtc::FunctionView<float(float)> GetActivationFunction(
ActivationFunction activation_function) {
switch (activation_function) {
case ActivationFunction::kTansigApproximated:
return ::rnnoise::TansigApproximated;
break;
case ActivationFunction::kSigmoidApproximated:
return ::rnnoise::SigmoidApproximated;
break;
}
}
} // namespace
FullyConnectedLayer::FullyConnectedLayer(
const int input_size,
const int output_size,
const rtc::ArrayView<const int8_t> bias,
const rtc::ArrayView<const int8_t> weights,
ActivationFunction activation_function,
const AvailableCpuFeatures& cpu_features,
absl::string_view layer_name)
: input_size_(input_size),
output_size_(output_size),
bias_(GetScaledParams(bias)),
weights_(PreprocessWeights(weights, output_size)),
vector_math_(cpu_features),
activation_function_(GetActivationFunction(activation_function)) {
RTC_DCHECK_LE(output_size_, kFullyConnectedLayerMaxUnits)
<< "Insufficient FC layer over-allocation (" << layer_name << ").";
RTC_DCHECK_EQ(output_size_, bias_.size())
<< "Mismatching output size and bias terms array size (" << layer_name
<< ").";
RTC_DCHECK_EQ(input_size_ * output_size_, weights_.size())
<< "Mismatching input-output size and weight coefficients array size ("
<< layer_name << ").";
}
FullyConnectedLayer::~FullyConnectedLayer() = default;
void FullyConnectedLayer::ComputeOutput(rtc::ArrayView<const float> input) {
RTC_DCHECK_EQ(input.size(), input_size_);
rtc::ArrayView<const float> weights(weights_);
for (int o = 0; o < output_size_; ++o) {
output_[o] = activation_function_(
bias_[o] + vector_math_.DotProduct(
input, weights.subview(o * input_size_, input_size_)));
}
}
} // namespace rnn_vad
} // namespace webrtc