
This fixes a variety of MSVC warnings about value truncations when implicitly storing the 64-bit values we get back from e.g. TimeTicks in 32-bit objects, and removes the need for a number of explicit casts. This also moves a number of constants so they're declared right where they're used, which is easier to read and maintain, and makes some of them of integral type rather than using the "enum hack". BUG=chromium:81439 TEST=none R=tommi@webrtc.org Review URL: https://webrtc-codereview.appspot.com/33649004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7905 4adac7df-926f-26a2-2b94-8c16560cd09d
573 lines
18 KiB
C++
573 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/video_engine/overuse_frame_detector.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <map>
|
|
|
|
#include "webrtc/base/exp_filter.h"
|
|
#include "webrtc/system_wrappers/interface/clock.h"
|
|
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
|
|
#include "webrtc/system_wrappers/interface/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// TODO(mflodman) Test different values for all of these to trigger correctly,
|
|
// avoid fluctuations etc.
|
|
namespace {
|
|
const int64_t kProcessIntervalMs = 5000;
|
|
|
|
// Weight factor to apply to the standard deviation.
|
|
const float kWeightFactor = 0.997f;
|
|
// Weight factor to apply to the average.
|
|
const float kWeightFactorMean = 0.98f;
|
|
|
|
// Delay between consecutive rampups. (Used for quick recovery.)
|
|
const int kQuickRampUpDelayMs = 10 * 1000;
|
|
// Delay between rampup attempts. Initially uses standard, scales up to max.
|
|
const int kStandardRampUpDelayMs = 40 * 1000;
|
|
const int kMaxRampUpDelayMs = 240 * 1000;
|
|
// Expontential back-off factor, to prevent annoying up-down behaviour.
|
|
const double kRampUpBackoffFactor = 2.0;
|
|
|
|
// Max number of overuses detected before always applying the rampup delay.
|
|
const int kMaxOverusesBeforeApplyRampupDelay = 4;
|
|
|
|
// The maximum exponent to use in VCMExpFilter.
|
|
const float kSampleDiffMs = 33.0f;
|
|
const float kMaxExp = 7.0f;
|
|
|
|
} // namespace
|
|
|
|
// TODO(asapersson): Remove this class. Not used.
|
|
Statistics::Statistics() :
|
|
sum_(0.0),
|
|
count_(0),
|
|
filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)),
|
|
filtered_variance_(new rtc::ExpFilter(kWeightFactor)) {
|
|
Reset();
|
|
}
|
|
|
|
void Statistics::SetOptions(const CpuOveruseOptions& options) {
|
|
options_ = options;
|
|
}
|
|
|
|
void Statistics::Reset() {
|
|
sum_ = 0.0;
|
|
count_ = 0;
|
|
filtered_variance_->Reset(kWeightFactor);
|
|
filtered_variance_->Apply(1.0f, InitialVariance());
|
|
}
|
|
|
|
void Statistics::AddSample(float sample_ms) {
|
|
sum_ += sample_ms;
|
|
++count_;
|
|
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
// Initialize filtered samples.
|
|
filtered_samples_->Reset(kWeightFactorMean);
|
|
filtered_samples_->Apply(1.0f, InitialMean());
|
|
return;
|
|
}
|
|
|
|
float exp = sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_samples_->Apply(exp, sample_ms);
|
|
filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) *
|
|
(sample_ms - filtered_samples_->filtered()));
|
|
}
|
|
|
|
float Statistics::InitialMean() const {
|
|
if (count_ == 0)
|
|
return 0.0;
|
|
return sum_ / count_;
|
|
}
|
|
|
|
float Statistics::InitialVariance() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
float average_stddev = (options_.low_capture_jitter_threshold_ms +
|
|
options_.high_capture_jitter_threshold_ms) / 2.0f;
|
|
return average_stddev * average_stddev;
|
|
}
|
|
|
|
float Statistics::Mean() const { return filtered_samples_->filtered(); }
|
|
|
|
float Statistics::StdDev() const {
|
|
return sqrt(std::max(filtered_variance_->filtered(), 0.0f));
|
|
}
|
|
|
|
uint64_t Statistics::Count() const { return count_; }
|
|
|
|
|
|
// Class for calculating the average encode time.
|
|
class OveruseFrameDetector::EncodeTimeAvg {
|
|
public:
|
|
EncodeTimeAvg()
|
|
: kWeightFactor(0.5f),
|
|
kInitialAvgEncodeTimeMs(5.0f),
|
|
filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) {
|
|
filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
|
|
}
|
|
~EncodeTimeAvg() {}
|
|
|
|
void AddSample(float encode_time_ms, int64_t diff_last_sample_ms) {
|
|
float exp = diff_last_sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
|
|
}
|
|
|
|
int Value() const {
|
|
return static_cast<int>(filtered_encode_time_ms_->filtered() + 0.5);
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactor;
|
|
const float kInitialAvgEncodeTimeMs;
|
|
scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_;
|
|
};
|
|
|
|
// Class for calculating the processing usage on the send-side (the average
|
|
// processing time of a frame divided by the average time difference between
|
|
// captured frames).
|
|
class OveruseFrameDetector::SendProcessingUsage {
|
|
public:
|
|
SendProcessingUsage()
|
|
: kWeightFactorFrameDiff(0.998f),
|
|
kWeightFactorProcessing(0.995f),
|
|
kInitialSampleDiffMs(40.0f),
|
|
kMaxSampleDiffMs(45.0f),
|
|
count_(0),
|
|
filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
|
|
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
|
|
Reset();
|
|
}
|
|
~SendProcessingUsage() {}
|
|
|
|
void SetOptions(const CpuOveruseOptions& options) {
|
|
options_ = options;
|
|
}
|
|
|
|
void Reset() {
|
|
count_ = 0;
|
|
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
|
|
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
|
|
filtered_processing_ms_->Reset(kWeightFactorProcessing);
|
|
filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
|
|
}
|
|
|
|
void AddCaptureSample(float sample_ms) {
|
|
float exp = sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_frame_diff_ms_->Apply(exp, sample_ms);
|
|
}
|
|
|
|
void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
|
|
++count_;
|
|
float exp = diff_last_sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_processing_ms_->Apply(exp, processing_ms);
|
|
}
|
|
|
|
int Value() const {
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
return static_cast<int>(InitialUsageInPercent() + 0.5f);
|
|
}
|
|
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
|
|
frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs);
|
|
float encode_usage_percent =
|
|
100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
|
|
return static_cast<int>(encode_usage_percent + 0.5);
|
|
}
|
|
|
|
private:
|
|
float InitialUsageInPercent() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
return (options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) / 2.0f;
|
|
}
|
|
|
|
float InitialProcessingMs() const {
|
|
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
|
|
}
|
|
|
|
const float kWeightFactorFrameDiff;
|
|
const float kWeightFactorProcessing;
|
|
const float kInitialSampleDiffMs;
|
|
const float kMaxSampleDiffMs;
|
|
uint64_t count_;
|
|
CpuOveruseOptions options_;
|
|
scoped_ptr<rtc::ExpFilter> filtered_processing_ms_;
|
|
scoped_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
|
|
};
|
|
|
|
// Class for calculating the processing time of frames.
|
|
class OveruseFrameDetector::FrameQueue {
|
|
public:
|
|
FrameQueue() : last_processing_time_ms_(-1) {}
|
|
~FrameQueue() {}
|
|
|
|
// Called when a frame is captured.
|
|
// Starts the measuring of the processing time of the frame.
|
|
void Start(int64_t capture_time, int64_t now) {
|
|
const size_t kMaxSize = 90; // Allows for processing time of 1.5s at 60fps.
|
|
if (frame_times_.size() > kMaxSize) {
|
|
LOG(LS_WARNING) << "Max size reached, removed oldest frame.";
|
|
frame_times_.erase(frame_times_.begin());
|
|
}
|
|
if (frame_times_.find(capture_time) != frame_times_.end()) {
|
|
// Frame should not exist.
|
|
assert(false);
|
|
return;
|
|
}
|
|
frame_times_[capture_time] = now;
|
|
}
|
|
|
|
// Called when the processing of a frame has finished.
|
|
// Returns the processing time of the frame.
|
|
int End(int64_t capture_time, int64_t now) {
|
|
std::map<int64_t, int64_t>::iterator it = frame_times_.find(capture_time);
|
|
if (it == frame_times_.end()) {
|
|
return -1;
|
|
}
|
|
// Remove any old frames up to current.
|
|
// Old frames have been skipped by the capture process thread.
|
|
// TODO(asapersson): Consider measuring time from first frame in list.
|
|
last_processing_time_ms_ = now - (*it).second;
|
|
frame_times_.erase(frame_times_.begin(), ++it);
|
|
return last_processing_time_ms_;
|
|
}
|
|
|
|
void Reset() { frame_times_.clear(); }
|
|
int NumFrames() const { return frame_times_.size(); }
|
|
int last_processing_time_ms() const { return last_processing_time_ms_; }
|
|
|
|
private:
|
|
// Captured frames mapped by the capture time.
|
|
std::map<int64_t, int64_t> frame_times_;
|
|
int last_processing_time_ms_;
|
|
};
|
|
|
|
// TODO(asapersson): Remove this class. Not used.
|
|
// Class for calculating the capture queue delay change.
|
|
class OveruseFrameDetector::CaptureQueueDelay {
|
|
public:
|
|
CaptureQueueDelay()
|
|
: kWeightFactor(0.5f),
|
|
delay_ms_(0),
|
|
filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) {
|
|
filtered_delay_ms_per_s_->Apply(1.0f, 0.0f);
|
|
}
|
|
~CaptureQueueDelay() {}
|
|
|
|
void FrameCaptured(int64_t now) {
|
|
const size_t kMaxSize = 200;
|
|
if (frames_.size() > kMaxSize) {
|
|
frames_.pop_front();
|
|
}
|
|
frames_.push_back(now);
|
|
}
|
|
|
|
void FrameProcessingStarted(int64_t now) {
|
|
if (frames_.empty()) {
|
|
return;
|
|
}
|
|
delay_ms_ = now - frames_.front();
|
|
frames_.pop_front();
|
|
}
|
|
|
|
void CalculateDelayChange(int64_t diff_last_sample_ms) {
|
|
if (diff_last_sample_ms <= 0) {
|
|
return;
|
|
}
|
|
float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_delay_ms_per_s_->Apply(exp,
|
|
delay_ms_ * 1000.0f / diff_last_sample_ms);
|
|
ClearFrames();
|
|
}
|
|
|
|
void ClearFrames() {
|
|
frames_.clear();
|
|
}
|
|
|
|
int delay_ms() const {
|
|
return delay_ms_;
|
|
}
|
|
|
|
int Value() const {
|
|
return static_cast<int>(filtered_delay_ms_per_s_->filtered() + 0.5);
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactor;
|
|
std::list<int64_t> frames_;
|
|
int delay_ms_;
|
|
scoped_ptr<rtc::ExpFilter> filtered_delay_ms_per_s_;
|
|
};
|
|
|
|
OveruseFrameDetector::OveruseFrameDetector(Clock* clock)
|
|
: crit_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
observer_(NULL),
|
|
clock_(clock),
|
|
next_process_time_(clock_->TimeInMilliseconds()),
|
|
num_process_times_(0),
|
|
last_capture_time_(0),
|
|
last_overuse_time_(0),
|
|
checks_above_threshold_(0),
|
|
num_overuse_detections_(0),
|
|
last_rampup_time_(0),
|
|
in_quick_rampup_(false),
|
|
current_rampup_delay_ms_(kStandardRampUpDelayMs),
|
|
num_pixels_(0),
|
|
last_encode_sample_ms_(0),
|
|
encode_time_(new EncodeTimeAvg()),
|
|
usage_(new SendProcessingUsage()),
|
|
frame_queue_(new FrameQueue()),
|
|
last_sample_time_ms_(0),
|
|
capture_queue_delay_(new CaptureQueueDelay()) {
|
|
}
|
|
|
|
OveruseFrameDetector::~OveruseFrameDetector() {
|
|
}
|
|
|
|
void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
observer_ = observer;
|
|
}
|
|
|
|
void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
|
|
assert(options.min_frame_samples > 0);
|
|
CriticalSectionScoped cs(crit_.get());
|
|
if (options_.Equals(options)) {
|
|
return;
|
|
}
|
|
options_ = options;
|
|
capture_deltas_.SetOptions(options);
|
|
usage_->SetOptions(options);
|
|
ResetAll(num_pixels_);
|
|
}
|
|
|
|
int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return capture_queue_delay_->delay_ms();
|
|
}
|
|
|
|
int OveruseFrameDetector::LastProcessingTimeMs() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return frame_queue_->last_processing_time_ms();
|
|
}
|
|
|
|
int OveruseFrameDetector::FramesInQueue() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return frame_queue_->NumFrames();
|
|
}
|
|
|
|
void OveruseFrameDetector::GetCpuOveruseMetrics(
|
|
CpuOveruseMetrics* metrics) const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
metrics->capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5);
|
|
metrics->avg_encode_time_ms = encode_time_->Value();
|
|
metrics->encode_rsd = 0;
|
|
metrics->encode_usage_percent = usage_->Value();
|
|
metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value();
|
|
}
|
|
|
|
int64_t OveruseFrameDetector::TimeUntilNextProcess() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return next_process_time_ - clock_->TimeInMilliseconds();
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
|
|
if (num_pixels != num_pixels_) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const {
|
|
if (last_capture_time_ == 0) {
|
|
return false;
|
|
}
|
|
return (now - last_capture_time_) > options_.frame_timeout_interval_ms;
|
|
}
|
|
|
|
void OveruseFrameDetector::ResetAll(int num_pixels) {
|
|
num_pixels_ = num_pixels;
|
|
capture_deltas_.Reset();
|
|
usage_->Reset();
|
|
frame_queue_->Reset();
|
|
capture_queue_delay_->ClearFrames();
|
|
last_capture_time_ = 0;
|
|
num_process_times_ = 0;
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameCaptured(int width,
|
|
int height,
|
|
int64_t capture_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) {
|
|
ResetAll(width * height);
|
|
}
|
|
|
|
if (last_capture_time_ != 0) {
|
|
capture_deltas_.AddSample(now - last_capture_time_);
|
|
usage_->AddCaptureSample(now - last_capture_time_);
|
|
}
|
|
last_capture_time_ = now;
|
|
|
|
capture_queue_delay_->FrameCaptured(now);
|
|
|
|
if (options_.enable_extended_processing_usage) {
|
|
frame_queue_->Start(capture_time_ms, now);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameProcessingStarted() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds());
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (last_encode_sample_ms_ != 0) {
|
|
int64_t diff_ms = now - last_encode_sample_ms_;
|
|
encode_time_->AddSample(encode_time_ms, diff_ms);
|
|
}
|
|
last_encode_sample_ms_ = now;
|
|
|
|
if (!options_.enable_extended_processing_usage) {
|
|
AddProcessingTime(encode_time_ms);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameSent(int64_t capture_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
if (!options_.enable_extended_processing_usage) {
|
|
return;
|
|
}
|
|
int delay_ms = frame_queue_->End(capture_time_ms,
|
|
clock_->TimeInMilliseconds());
|
|
if (delay_ms > 0) {
|
|
AddProcessingTime(delay_ms);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::AddProcessingTime(int elapsed_ms) {
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (last_sample_time_ms_ != 0) {
|
|
int64_t diff_ms = now - last_sample_time_ms_;
|
|
usage_->AddSample(elapsed_ms, diff_ms);
|
|
}
|
|
last_sample_time_ms_ = now;
|
|
}
|
|
|
|
int32_t OveruseFrameDetector::Process() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
|
|
// Used to protect against Process() being called too often.
|
|
if (now < next_process_time_)
|
|
return 0;
|
|
|
|
int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs;
|
|
next_process_time_ = now + kProcessIntervalMs;
|
|
++num_process_times_;
|
|
|
|
capture_queue_delay_->CalculateDelayChange(diff_ms);
|
|
|
|
if (num_process_times_ <= options_.min_process_count) {
|
|
return 0;
|
|
}
|
|
|
|
if (IsOverusing()) {
|
|
// If the last thing we did was going up, and now have to back down, we need
|
|
// to check if this peak was short. If so we should back off to avoid going
|
|
// back and forth between this load, the system doesn't seem to handle it.
|
|
bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
|
|
if (check_for_backoff) {
|
|
if (now - last_rampup_time_ < kStandardRampUpDelayMs ||
|
|
num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
|
|
// Going up was not ok for very long, back off.
|
|
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
|
|
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
|
|
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
|
|
} else {
|
|
// Not currently backing off, reset rampup delay.
|
|
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
|
|
}
|
|
}
|
|
|
|
last_overuse_time_ = now;
|
|
in_quick_rampup_ = false;
|
|
checks_above_threshold_ = 0;
|
|
++num_overuse_detections_;
|
|
|
|
if (observer_ != NULL)
|
|
observer_->OveruseDetected();
|
|
} else if (IsUnderusing(now)) {
|
|
last_rampup_time_ = now;
|
|
in_quick_rampup_ = true;
|
|
|
|
if (observer_ != NULL)
|
|
observer_->NormalUsage();
|
|
}
|
|
|
|
int rampup_delay =
|
|
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean()
|
|
<< " capture stddev " << capture_deltas_.StdDev()
|
|
<< " encode usage " << usage_->Value()
|
|
<< " overuse detections " << num_overuse_detections_
|
|
<< " rampup delay " << rampup_delay;
|
|
return 0;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsOverusing() {
|
|
bool overusing = false;
|
|
if (options_.enable_capture_jitter_method) {
|
|
overusing = capture_deltas_.StdDev() >=
|
|
options_.high_capture_jitter_threshold_ms;
|
|
} else if (options_.enable_encode_usage_method) {
|
|
overusing = usage_->Value() >= options_.high_encode_usage_threshold_percent;
|
|
}
|
|
|
|
if (overusing) {
|
|
++checks_above_threshold_;
|
|
} else {
|
|
checks_above_threshold_ = 0;
|
|
}
|
|
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
|
|
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
if (time_now < last_rampup_time_ + delay)
|
|
return false;
|
|
|
|
bool underusing = false;
|
|
if (options_.enable_capture_jitter_method) {
|
|
underusing = capture_deltas_.StdDev() <
|
|
options_.low_capture_jitter_threshold_ms;
|
|
} else if (options_.enable_encode_usage_method) {
|
|
underusing = usage_->Value() < options_.low_encode_usage_threshold_percent;
|
|
}
|
|
return underusing;
|
|
}
|
|
} // namespace webrtc
|