Files
platform-external-webrtc/webrtc/base/sslidentity.cc
Torbjorn Granlund 46c9cc0190 Provide method for returning certificate expiration time stamp.
We convert ASN1 time via std::tm to int64_t representing milliseconds-since-epoch. We do not use time_t since that cannot store milliseconds, and expires for 32-bit platforms in 2038 also for seconds.

Conversion via std::tm might might seem silly, but actually doesn't add any complexity.

One would expect tm -> seconds-since-epoch to already exist on the standard library. There is mktime, but it uses localtime (and sets an environment variable, and has the 2038 problem).

The ASN1 TIME parsing is limited to what is required by RFC 5280.

BUG=webrtc:5150
R=hbos@webrtc.org, nisse@webrtc.org, tommi@webrtc.org

Review URL: https://codereview.webrtc.org/1468273004 .

Cr-Commit-Position: refs/heads/master@{#10854}
2015-12-01 12:06:46 +00:00

252 lines
7.1 KiB
C++

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Handling of certificates and keypairs for SSLStreamAdapter's peer mode.
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include "webrtc/base/sslidentity.h"
#include <ctime>
#include <string>
#include "webrtc/base/base64.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/sslconfig.h"
#if SSL_USE_OPENSSL
#include "webrtc/base/opensslidentity.h"
#endif // SSL_USE_OPENSSL
namespace rtc {
const char kPemTypeCertificate[] = "CERTIFICATE";
const char kPemTypeRsaPrivateKey[] = "RSA PRIVATE KEY";
const char kPemTypeEcPrivateKey[] = "EC PRIVATE KEY";
KeyParams::KeyParams(KeyType key_type) {
if (key_type == KT_ECDSA) {
type_ = KT_ECDSA;
params_.curve = EC_NIST_P256;
} else if (key_type == KT_RSA) {
type_ = KT_RSA;
params_.rsa.mod_size = kRsaDefaultModSize;
params_.rsa.pub_exp = kRsaDefaultExponent;
} else {
RTC_NOTREACHED();
}
}
// static
KeyParams KeyParams::RSA(int mod_size, int pub_exp) {
KeyParams kt(KT_RSA);
kt.params_.rsa.mod_size = mod_size;
kt.params_.rsa.pub_exp = pub_exp;
return kt;
}
// static
KeyParams KeyParams::ECDSA(ECCurve curve) {
KeyParams kt(KT_ECDSA);
kt.params_.curve = curve;
return kt;
}
bool KeyParams::IsValid() const {
if (type_ == KT_RSA) {
return (params_.rsa.mod_size >= kRsaMinModSize &&
params_.rsa.mod_size <= kRsaMaxModSize &&
params_.rsa.pub_exp > params_.rsa.mod_size);
} else if (type_ == KT_ECDSA) {
return (params_.curve == EC_NIST_P256);
}
return false;
}
RSAParams KeyParams::rsa_params() const {
RTC_DCHECK(type_ == KT_RSA);
return params_.rsa;
}
ECCurve KeyParams::ec_curve() const {
RTC_DCHECK(type_ == KT_ECDSA);
return params_.curve;
}
KeyType IntKeyTypeFamilyToKeyType(int key_type_family) {
return static_cast<KeyType>(key_type_family);
}
bool SSLIdentity::PemToDer(const std::string& pem_type,
const std::string& pem_string,
std::string* der) {
// Find the inner body. We need this to fulfill the contract of
// returning pem_length.
size_t header = pem_string.find("-----BEGIN " + pem_type + "-----");
if (header == std::string::npos)
return false;
size_t body = pem_string.find("\n", header);
if (body == std::string::npos)
return false;
size_t trailer = pem_string.find("-----END " + pem_type + "-----");
if (trailer == std::string::npos)
return false;
std::string inner = pem_string.substr(body + 1, trailer - (body + 1));
*der = Base64::Decode(inner, Base64::DO_PARSE_WHITE |
Base64::DO_PAD_ANY |
Base64::DO_TERM_BUFFER);
return true;
}
std::string SSLIdentity::DerToPem(const std::string& pem_type,
const unsigned char* data,
size_t length) {
std::stringstream result;
result << "-----BEGIN " << pem_type << "-----\n";
std::string b64_encoded;
Base64::EncodeFromArray(data, length, &b64_encoded);
// Divide the Base-64 encoded data into 64-character chunks, as per
// 4.3.2.4 of RFC 1421.
static const size_t kChunkSize = 64;
size_t chunks = (b64_encoded.size() + (kChunkSize - 1)) / kChunkSize;
for (size_t i = 0, chunk_offset = 0; i < chunks;
++i, chunk_offset += kChunkSize) {
result << b64_encoded.substr(chunk_offset, kChunkSize);
result << "\n";
}
result << "-----END " << pem_type << "-----\n";
return result.str();
}
SSLCertChain::SSLCertChain(const std::vector<SSLCertificate*>& certs) {
ASSERT(!certs.empty());
certs_.resize(certs.size());
std::transform(certs.begin(), certs.end(), certs_.begin(), DupCert);
}
SSLCertChain::SSLCertChain(const SSLCertificate* cert) {
certs_.push_back(cert->GetReference());
}
SSLCertChain::~SSLCertChain() {
std::for_each(certs_.begin(), certs_.end(), DeleteCert);
}
#if SSL_USE_OPENSSL
SSLCertificate* SSLCertificate::FromPEMString(const std::string& pem_string) {
return OpenSSLCertificate::FromPEMString(pem_string);
}
SSLIdentity* SSLIdentity::Generate(const std::string& common_name,
const KeyParams& key_params) {
return OpenSSLIdentity::Generate(common_name, key_params);
}
SSLIdentity* SSLIdentity::GenerateForTest(const SSLIdentityParams& params) {
return OpenSSLIdentity::GenerateForTest(params);
}
SSLIdentity* SSLIdentity::FromPEMStrings(const std::string& private_key,
const std::string& certificate) {
return OpenSSLIdentity::FromPEMStrings(private_key, certificate);
}
#else // !SSL_USE_OPENSSL
#error "No SSL implementation"
#endif // SSL_USE_OPENSSL
// Read |n| bytes from ASN1 number string at *|pp| and return the numeric value.
// Update *|pp| and *|np| to reflect number of read bytes.
static inline int ASN1ReadInt(const unsigned char** pp, size_t* np, size_t n) {
const unsigned char* p = *pp;
int x = 0;
for (size_t i = 0; i < n; i++)
x = 10 * x + p[i] - '0';
*pp = p + n;
*np = *np - n;
return x;
}
int64_t ASN1TimeToSec(const unsigned char* s, size_t length, bool long_format) {
size_t bytes_left = length;
// Make sure the string ends with Z. Doing it here protects the strspn call
// from running off the end of the string in Z's absense.
if (length == 0 || s[length - 1] != 'Z')
return -1;
// Make sure we only have ASCII digits so that we don't need to clutter the
// code below and ASN1ReadInt with error checking.
size_t n = strspn(reinterpret_cast<const char*>(s), "0123456789");
if (n + 1 != length)
return -1;
int year;
// Read out ASN1 year, in either 2-char "UTCTIME" or 4-char "GENERALIZEDTIME"
// format. Both format use UTC in this context.
if (long_format) {
// ASN1 format: yyyymmddhh[mm[ss[.fff]]]Z where the Z is literal, but
// RFC 5280 requires us to only support exactly yyyymmddhhmmssZ.
if (bytes_left < 11)
return -1;
year = ASN1ReadInt(&s, &bytes_left, 4);
year -= 1900;
} else {
// ASN1 format: yymmddhhmm[ss]Z where the Z is literal, but RFC 5280
// requires us to only support exactly yymmddhhmmssZ.
if (bytes_left < 9)
return -1;
year = ASN1ReadInt(&s, &bytes_left, 2);
if (year < 50) // Per RFC 5280 4.1.2.5.1
year += 100;
}
std::tm tm;
tm.tm_year = year;
// Read out remaining ASN1 time data and store it in |tm| in documented
// std::tm format.
tm.tm_mon = ASN1ReadInt(&s, &bytes_left, 2) - 1;
tm.tm_mday = ASN1ReadInt(&s, &bytes_left, 2);
tm.tm_hour = ASN1ReadInt(&s, &bytes_left, 2);
tm.tm_min = ASN1ReadInt(&s, &bytes_left, 2);
tm.tm_sec = ASN1ReadInt(&s, &bytes_left, 2);
if (bytes_left != 1) {
// Now just Z should remain. Its existence was asserted above.
return -1;
}
return TmToSeconds(tm);
}
} // namespace rtc