Files
platform-external-webrtc/webrtc/modules/video_coding/main/source/timing_unittest.cc
stefan@webrtc.org 9f557c140e Improve wraparound handling in the render time extrapolator.
This was actually working as intended, but as r3970 changed when render timestamps were extrapolated to when a frame was taken out for decoding, the wraparound could have happened in the Update() step before it had happened in the ExtrapolateLocalTime() step. This causes render timestamps to be generated 13 hours into the future.

TEST=trybots
BUG=1787
R=mflodman@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/1497004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@4055 4adac7df-926f-26a2-2b94-8c16560cd09d
2013-05-17 12:55:07 +00:00

146 lines
5.3 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <gtest/gtest.h>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/timing.h"
#include "webrtc/modules/video_coding/main/test/receiver_tests.h"
#include "webrtc/modules/video_coding/main/test/test_util.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
TEST(ReceiverTiming, Tests) {
SimulatedClock clock(0);
VCMTiming timing(&clock);
uint32_t waitTime = 0;
uint32_t jitterDelayMs = 0;
uint32_t maxDecodeTimeMs = 0;
uint32_t timeStamp = 0;
timing.Reset();
timing.UpdateCurrentDelay(timeStamp);
timing.Reset();
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
jitterDelayMs = 20;
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
timing.SetRenderDelay(0);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// First update initializes the render time. Since we have no decode delay
// we get waitTime = renderTime - now - renderDelay = jitter.
EXPECT_EQ(jitterDelayMs, waitTime);
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
timeStamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(
timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds());
// Since we gradually increase the delay we only get 100 ms every second.
EXPECT_EQ(jitterDelayMs - 10, waitTime);
timeStamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(waitTime, jitterDelayMs);
// 300 incoming frames without jitter, verify that this gives the exact wait
// time.
for (int i = 0; i < 300; i++) {
clock.AdvanceTimeMilliseconds(1000 / 25);
timeStamp += 90000 / 25;
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
}
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(waitTime, jitterDelayMs);
// Add decode time estimates.
for (int i = 0; i < 10; i++) {
int64_t startTimeMs = clock.TimeInMilliseconds();
clock.AdvanceTimeMilliseconds(10);
timing.StopDecodeTimer(timeStamp, startTimeMs,
clock.TimeInMilliseconds());
timeStamp += 90000 / 25;
clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
}
maxDecodeTimeMs = 10;
timing.SetRequiredDelay(jitterDelayMs);
clock.AdvanceTimeMilliseconds(1000);
timeStamp += 90000;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(waitTime, jitterDelayMs);
uint32_t minTotalDelayMs = 200;
timing.SetMinimumTotalDelay(minTotalDelayMs);
clock.AdvanceTimeMilliseconds(5000);
timeStamp += 5*90000;
timing.UpdateCurrentDelay(timeStamp);
const int kRenderDelayMs = 10;
timing.SetRenderDelay(kRenderDelayMs);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime
// (10) to wait.
EXPECT_EQ(waitTime, minTotalDelayMs - maxDecodeTimeMs - kRenderDelayMs);
// The total video delay should be equal to the min total delay.
EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay());
// Reset min total delay.
timing.SetMinimumTotalDelay(0);
clock.AdvanceTimeMilliseconds(5000);
timeStamp += 5*90000;
timing.UpdateCurrentDelay(timeStamp);
}
TEST(ReceiverTiming, WrapAround) {
const int kFramerate = 25;
SimulatedClock clock(0);
VCMTiming timing(&clock);
// Provoke a wrap-around. The forth frame will have wrapped at 25 fps.
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate;
for (int i = 0; i < 4; ++i) {
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
clock.AdvanceTimeMilliseconds(1000 / kFramerate);
timestamp += 90000 / kFramerate;
int64_t render_time = timing.RenderTimeMs(0xFFFFFFFFu,
clock.TimeInMilliseconds());
EXPECT_EQ(3 * 1000 / kFramerate, render_time);
render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz.
clock.TimeInMilliseconds());
EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time);
}
}
} // namespace webrtc