This CL is the result of running include-what-you-use tool on part of the code base (audio target and dependencies) plus manual fixes. bug: webrtc:8311 Change-Id: I277d281ce943c3ecc1bd45fd8d83055931743604 Reviewed-on: https://webrtc-review.googlesource.com/c/106280 Commit-Queue: Yves Gerey <yvesg@google.com> Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Patrik Höglund <phoglund@webrtc.org> Cr-Commit-Position: refs/heads/master@{#25311}
170 lines
5.4 KiB
C++
170 lines
5.4 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/fullband_erle_estimator.h"
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <numeric>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/aec3_common.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
constexpr float kEpsilon = 1e-3f;
|
|
constexpr float kX2BandEnergyThreshold = 44015068.0f;
|
|
constexpr int kErleHold = 100;
|
|
constexpr int kPointsToAccumulate = 6;
|
|
} // namespace
|
|
|
|
FullBandErleEstimator::FullBandErleEstimator(float min_erle, float max_erle_lf)
|
|
: min_erle_log2_(FastApproxLog2f(min_erle + kEpsilon)),
|
|
max_erle_lf_log2(FastApproxLog2f(max_erle_lf + kEpsilon)) {
|
|
Reset();
|
|
}
|
|
|
|
FullBandErleEstimator::~FullBandErleEstimator() = default;
|
|
|
|
void FullBandErleEstimator::Reset() {
|
|
instantaneous_erle_.Reset();
|
|
erle_time_domain_log2_ = min_erle_log2_;
|
|
hold_counter_time_domain_ = 0;
|
|
}
|
|
|
|
void FullBandErleEstimator::Update(rtc::ArrayView<const float> X2,
|
|
rtc::ArrayView<const float> Y2,
|
|
rtc::ArrayView<const float> E2,
|
|
bool converged_filter) {
|
|
if (converged_filter) {
|
|
// Computes the fullband ERLE.
|
|
const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
|
|
if (X2_sum > kX2BandEnergyThreshold * X2.size()) {
|
|
const float Y2_sum = std::accumulate(Y2.begin(), Y2.end(), 0.0f);
|
|
const float E2_sum = std::accumulate(E2.begin(), E2.end(), 0.0f);
|
|
if (instantaneous_erle_.Update(Y2_sum, E2_sum)) {
|
|
hold_counter_time_domain_ = kErleHold;
|
|
erle_time_domain_log2_ +=
|
|
0.1f * ((instantaneous_erle_.GetInstErleLog2().value()) -
|
|
erle_time_domain_log2_);
|
|
erle_time_domain_log2_ = rtc::SafeClamp(
|
|
erle_time_domain_log2_, min_erle_log2_, max_erle_lf_log2);
|
|
}
|
|
}
|
|
}
|
|
--hold_counter_time_domain_;
|
|
if (hold_counter_time_domain_ <= 0) {
|
|
erle_time_domain_log2_ =
|
|
std::max(min_erle_log2_, erle_time_domain_log2_ - 0.044f);
|
|
}
|
|
if (hold_counter_time_domain_ == 0) {
|
|
instantaneous_erle_.ResetAccumulators();
|
|
}
|
|
}
|
|
|
|
void FullBandErleEstimator::Dump(
|
|
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
|
|
data_dumper->DumpRaw("aec3_fullband_erle_log2", FullbandErleLog2());
|
|
instantaneous_erle_.Dump(data_dumper);
|
|
}
|
|
|
|
FullBandErleEstimator::ErleInstantaneous::ErleInstantaneous() {
|
|
Reset();
|
|
}
|
|
|
|
FullBandErleEstimator::ErleInstantaneous::~ErleInstantaneous() = default;
|
|
|
|
bool FullBandErleEstimator::ErleInstantaneous::Update(const float Y2_sum,
|
|
const float E2_sum) {
|
|
bool update_estimates = false;
|
|
E2_acum_ += E2_sum;
|
|
Y2_acum_ += Y2_sum;
|
|
num_points_++;
|
|
if (num_points_ == kPointsToAccumulate) {
|
|
if (E2_acum_ > 0.f) {
|
|
update_estimates = true;
|
|
erle_log2_ = FastApproxLog2f(Y2_acum_ / E2_acum_ + kEpsilon);
|
|
}
|
|
num_points_ = 0;
|
|
E2_acum_ = 0.f;
|
|
Y2_acum_ = 0.f;
|
|
}
|
|
|
|
if (update_estimates) {
|
|
UpdateMaxMin();
|
|
UpdateQualityEstimate();
|
|
}
|
|
return update_estimates;
|
|
}
|
|
|
|
void FullBandErleEstimator::ErleInstantaneous::Reset() {
|
|
ResetAccumulators();
|
|
max_erle_log2_ = -10.f; // -30 dB.
|
|
min_erle_log2_ = 33.f; // 100 dB.
|
|
inst_quality_estimate_ = 0.f;
|
|
}
|
|
|
|
void FullBandErleEstimator::ErleInstantaneous::ResetAccumulators() {
|
|
erle_log2_ = absl::nullopt;
|
|
inst_quality_estimate_ = 0.f;
|
|
num_points_ = 0;
|
|
E2_acum_ = 0.f;
|
|
Y2_acum_ = 0.f;
|
|
}
|
|
|
|
void FullBandErleEstimator::ErleInstantaneous::Dump(
|
|
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
|
|
data_dumper->DumpRaw("aec3_fullband_erle_inst_log2",
|
|
erle_log2_ ? *erle_log2_ : -10.f);
|
|
data_dumper->DumpRaw(
|
|
"aec3_erle_instantaneous_quality",
|
|
GetQualityEstimate() ? GetQualityEstimate().value() : 0.f);
|
|
data_dumper->DumpRaw("aec3_fullband_erle_max_log2", max_erle_log2_);
|
|
data_dumper->DumpRaw("aec3_fullband_erle_min_log2", min_erle_log2_);
|
|
}
|
|
|
|
void FullBandErleEstimator::ErleInstantaneous::UpdateMaxMin() {
|
|
RTC_DCHECK(erle_log2_);
|
|
if (erle_log2_.value() > max_erle_log2_) {
|
|
max_erle_log2_ = erle_log2_.value();
|
|
} else {
|
|
max_erle_log2_ -= 0.0004; // Forget factor, approx 1dB every 3 sec.
|
|
}
|
|
|
|
if (erle_log2_.value() < min_erle_log2_) {
|
|
min_erle_log2_ = erle_log2_.value();
|
|
} else {
|
|
min_erle_log2_ += 0.0004; // Forget factor, approx 1dB every 3 sec.
|
|
}
|
|
}
|
|
|
|
void FullBandErleEstimator::ErleInstantaneous::UpdateQualityEstimate() {
|
|
const float alpha = 0.07f;
|
|
float quality_estimate = 0.f;
|
|
RTC_DCHECK(erle_log2_);
|
|
if (max_erle_log2_ > min_erle_log2_) {
|
|
quality_estimate = (erle_log2_.value() - min_erle_log2_) /
|
|
(max_erle_log2_ - min_erle_log2_);
|
|
}
|
|
if (quality_estimate > inst_quality_estimate_) {
|
|
inst_quality_estimate_ = quality_estimate;
|
|
} else {
|
|
inst_quality_estimate_ +=
|
|
alpha * (quality_estimate - inst_quality_estimate_);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|