
R=mflodman@webrtc.org Review URL: https://webrtc-codereview.appspot.com/12479004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@6249 4adac7df-926f-26a2-2b94-8c16560cd09d
475 lines
14 KiB
C++
475 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/video_engine/overuse_frame_detector.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
|
|
#include "webrtc/modules/video_coding/utility/include/exp_filter.h"
|
|
#include "webrtc/system_wrappers/interface/clock.h"
|
|
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
|
|
#include "webrtc/system_wrappers/interface/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// TODO(mflodman) Test different values for all of these to trigger correctly,
|
|
// avoid fluctuations etc.
|
|
namespace {
|
|
const int64_t kProcessIntervalMs = 5000;
|
|
|
|
// Weight factor to apply to the standard deviation.
|
|
const float kWeightFactor = 0.997f;
|
|
// Weight factor to apply to the average.
|
|
const float kWeightFactorMean = 0.98f;
|
|
|
|
// Delay between consecutive rampups. (Used for quick recovery.)
|
|
const int kQuickRampUpDelayMs = 10 * 1000;
|
|
// Delay between rampup attempts. Initially uses standard, scales up to max.
|
|
const int kStandardRampUpDelayMs = 30 * 1000;
|
|
const int kMaxRampUpDelayMs = 120 * 1000;
|
|
// Expontential back-off factor, to prevent annoying up-down behaviour.
|
|
const double kRampUpBackoffFactor = 2.0;
|
|
|
|
// The initial average encode time (set to a fairly small value).
|
|
const float kInitialAvgEncodeTimeMs = 5.0f;
|
|
|
|
// The maximum exponent to use in VCMExpFilter.
|
|
const float kSampleDiffMs = 33.0f;
|
|
const float kMaxExp = 7.0f;
|
|
|
|
} // namespace
|
|
|
|
Statistics::Statistics() :
|
|
sum_(0.0),
|
|
count_(0),
|
|
filtered_samples_(new VCMExpFilter(kWeightFactorMean)),
|
|
filtered_variance_(new VCMExpFilter(kWeightFactor)) {
|
|
Reset();
|
|
}
|
|
|
|
void Statistics::SetOptions(const CpuOveruseOptions& options) {
|
|
options_ = options;
|
|
}
|
|
|
|
void Statistics::Reset() {
|
|
sum_ = 0.0;
|
|
count_ = 0;
|
|
filtered_variance_->Reset(kWeightFactor);
|
|
filtered_variance_->Apply(1.0f, InitialVariance());
|
|
}
|
|
|
|
void Statistics::AddSample(float sample_ms) {
|
|
sum_ += sample_ms;
|
|
++count_;
|
|
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
// Initialize filtered samples.
|
|
filtered_samples_->Reset(kWeightFactorMean);
|
|
filtered_samples_->Apply(1.0f, InitialMean());
|
|
return;
|
|
}
|
|
|
|
float exp = sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_samples_->Apply(exp, sample_ms);
|
|
filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->Value()) *
|
|
(sample_ms - filtered_samples_->Value()));
|
|
}
|
|
|
|
float Statistics::InitialMean() const {
|
|
if (count_ == 0)
|
|
return 0.0;
|
|
return sum_ / count_;
|
|
}
|
|
|
|
float Statistics::InitialVariance() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
float average_stddev = (options_.low_capture_jitter_threshold_ms +
|
|
options_.high_capture_jitter_threshold_ms) / 2.0f;
|
|
return average_stddev * average_stddev;
|
|
}
|
|
|
|
float Statistics::Mean() const { return filtered_samples_->Value(); }
|
|
|
|
float Statistics::StdDev() const {
|
|
return sqrt(std::max(filtered_variance_->Value(), 0.0f));
|
|
}
|
|
|
|
uint64_t Statistics::Count() const { return count_; }
|
|
|
|
|
|
// Class for calculating the average encode time.
|
|
class OveruseFrameDetector::EncodeTimeAvg {
|
|
public:
|
|
EncodeTimeAvg()
|
|
: kWeightFactor(0.5f),
|
|
filtered_encode_time_ms_(new VCMExpFilter(kWeightFactor)) {
|
|
filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
|
|
}
|
|
~EncodeTimeAvg() {}
|
|
|
|
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
|
|
float exp = diff_last_sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
|
|
}
|
|
|
|
int filtered_encode_time_ms() const {
|
|
return static_cast<int>(filtered_encode_time_ms_->Value() + 0.5);
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactor;
|
|
scoped_ptr<VCMExpFilter> filtered_encode_time_ms_;
|
|
};
|
|
|
|
// Class for calculating the encode usage.
|
|
class OveruseFrameDetector::EncodeUsage {
|
|
public:
|
|
EncodeUsage()
|
|
: kWeightFactorFrameDiff(0.998f),
|
|
kWeightFactorEncodeTime(0.995f),
|
|
kInitialSampleDiffMs(40.0f),
|
|
kMaxSampleDiffMs(45.0f),
|
|
count_(0),
|
|
filtered_encode_time_ms_(new VCMExpFilter(kWeightFactorEncodeTime)),
|
|
filtered_frame_diff_ms_(new VCMExpFilter(kWeightFactorFrameDiff)) {
|
|
Reset();
|
|
}
|
|
~EncodeUsage() {}
|
|
|
|
void SetOptions(const CpuOveruseOptions& options) {
|
|
options_ = options;
|
|
}
|
|
|
|
void Reset() {
|
|
count_ = 0;
|
|
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
|
|
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
|
|
filtered_encode_time_ms_->Reset(kWeightFactorEncodeTime);
|
|
filtered_encode_time_ms_->Apply(1.0f, InitialEncodeTimeMs());
|
|
}
|
|
|
|
void AddSample(float sample_ms) {
|
|
float exp = sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_frame_diff_ms_->Apply(exp, sample_ms);
|
|
}
|
|
|
|
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
|
|
++count_;
|
|
float exp = diff_last_sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
|
|
}
|
|
|
|
int UsageInPercent() const {
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
return static_cast<int>(InitialUsageInPercent() + 0.5f);
|
|
}
|
|
float frame_diff_ms = std::max(filtered_frame_diff_ms_->Value(), 1.0f);
|
|
frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs);
|
|
float encode_usage_percent =
|
|
100.0f * filtered_encode_time_ms_->Value() / frame_diff_ms;
|
|
return static_cast<int>(encode_usage_percent + 0.5);
|
|
}
|
|
|
|
float InitialUsageInPercent() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
return (options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) / 2.0f;
|
|
}
|
|
|
|
float InitialEncodeTimeMs() const {
|
|
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactorFrameDiff;
|
|
const float kWeightFactorEncodeTime;
|
|
const float kInitialSampleDiffMs;
|
|
const float kMaxSampleDiffMs;
|
|
uint64_t count_;
|
|
CpuOveruseOptions options_;
|
|
scoped_ptr<VCMExpFilter> filtered_encode_time_ms_;
|
|
scoped_ptr<VCMExpFilter> filtered_frame_diff_ms_;
|
|
};
|
|
|
|
// Class for calculating the capture queue delay change.
|
|
class OveruseFrameDetector::CaptureQueueDelay {
|
|
public:
|
|
CaptureQueueDelay()
|
|
: kWeightFactor(0.5f),
|
|
delay_ms_(0),
|
|
filtered_delay_ms_per_s_(new VCMExpFilter(kWeightFactor)) {
|
|
filtered_delay_ms_per_s_->Apply(1.0f, 0.0f);
|
|
}
|
|
~CaptureQueueDelay() {}
|
|
|
|
void FrameCaptured(int64_t now) {
|
|
const size_t kMaxSize = 200;
|
|
if (frames_.size() > kMaxSize) {
|
|
frames_.pop_front();
|
|
}
|
|
frames_.push_back(now);
|
|
}
|
|
|
|
void FrameProcessingStarted(int64_t now) {
|
|
if (frames_.empty()) {
|
|
return;
|
|
}
|
|
delay_ms_ = now - frames_.front();
|
|
frames_.pop_front();
|
|
}
|
|
|
|
void CalculateDelayChange(int64_t diff_last_sample_ms) {
|
|
if (diff_last_sample_ms <= 0) {
|
|
return;
|
|
}
|
|
float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_delay_ms_per_s_->Apply(exp,
|
|
delay_ms_ * 1000.0f / diff_last_sample_ms);
|
|
ClearFrames();
|
|
}
|
|
|
|
void ClearFrames() {
|
|
frames_.clear();
|
|
}
|
|
|
|
int delay_ms() const {
|
|
return delay_ms_;
|
|
}
|
|
|
|
int filtered_delay_ms_per_s() const {
|
|
return static_cast<int>(filtered_delay_ms_per_s_->Value() + 0.5);
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactor;
|
|
std::list<int64_t> frames_;
|
|
int delay_ms_;
|
|
scoped_ptr<VCMExpFilter> filtered_delay_ms_per_s_;
|
|
};
|
|
|
|
OveruseFrameDetector::OveruseFrameDetector(Clock* clock)
|
|
: crit_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
observer_(NULL),
|
|
clock_(clock),
|
|
next_process_time_(clock_->TimeInMilliseconds()),
|
|
num_process_times_(0),
|
|
last_capture_time_(0),
|
|
last_overuse_time_(0),
|
|
checks_above_threshold_(0),
|
|
last_rampup_time_(0),
|
|
in_quick_rampup_(false),
|
|
current_rampup_delay_ms_(kStandardRampUpDelayMs),
|
|
num_pixels_(0),
|
|
last_encode_sample_ms_(0),
|
|
encode_time_(new EncodeTimeAvg()),
|
|
encode_usage_(new EncodeUsage()),
|
|
capture_queue_delay_(new CaptureQueueDelay()) {
|
|
}
|
|
|
|
OveruseFrameDetector::~OveruseFrameDetector() {
|
|
}
|
|
|
|
void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
observer_ = observer;
|
|
}
|
|
|
|
void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
|
|
assert(options.min_frame_samples > 0);
|
|
CriticalSectionScoped cs(crit_.get());
|
|
if (options_.Equals(options)) {
|
|
return;
|
|
}
|
|
options_ = options;
|
|
capture_deltas_.SetOptions(options);
|
|
encode_usage_->SetOptions(options);
|
|
ResetAll(num_pixels_);
|
|
}
|
|
|
|
int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return capture_queue_delay_->delay_ms();
|
|
}
|
|
|
|
void OveruseFrameDetector::GetCpuOveruseMetrics(
|
|
CpuOveruseMetrics* metrics) const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
metrics->capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5);
|
|
metrics->avg_encode_time_ms = encode_time_->filtered_encode_time_ms();
|
|
metrics->encode_usage_percent = encode_usage_->UsageInPercent();
|
|
metrics->capture_queue_delay_ms_per_s =
|
|
capture_queue_delay_->filtered_delay_ms_per_s();
|
|
}
|
|
|
|
int32_t OveruseFrameDetector::TimeUntilNextProcess() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return next_process_time_ - clock_->TimeInMilliseconds();
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
|
|
if (num_pixels != num_pixels_) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const {
|
|
if (last_capture_time_ == 0) {
|
|
return false;
|
|
}
|
|
return (now - last_capture_time_) > options_.frame_timeout_interval_ms;
|
|
}
|
|
|
|
void OveruseFrameDetector::ResetAll(int num_pixels) {
|
|
num_pixels_ = num_pixels;
|
|
capture_deltas_.Reset();
|
|
encode_usage_->Reset();
|
|
capture_queue_delay_->ClearFrames();
|
|
last_capture_time_ = 0;
|
|
num_process_times_ = 0;
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameCaptured(int width, int height) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) {
|
|
ResetAll(width * height);
|
|
}
|
|
|
|
if (last_capture_time_ != 0) {
|
|
capture_deltas_.AddSample(now - last_capture_time_);
|
|
encode_usage_->AddSample(now - last_capture_time_);
|
|
}
|
|
last_capture_time_ = now;
|
|
|
|
capture_queue_delay_->FrameCaptured(now);
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameProcessingStarted() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds());
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
int64_t time = clock_->TimeInMilliseconds();
|
|
if (last_encode_sample_ms_ != 0) {
|
|
int64_t diff_ms = time - last_encode_sample_ms_;
|
|
encode_time_->AddEncodeSample(encode_time_ms, diff_ms);
|
|
encode_usage_->AddEncodeSample(encode_time_ms, diff_ms);
|
|
}
|
|
last_encode_sample_ms_ = time;
|
|
}
|
|
|
|
int32_t OveruseFrameDetector::Process() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
|
|
// Used to protect against Process() being called too often.
|
|
if (now < next_process_time_)
|
|
return 0;
|
|
|
|
int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs;
|
|
next_process_time_ = now + kProcessIntervalMs;
|
|
++num_process_times_;
|
|
|
|
capture_queue_delay_->CalculateDelayChange(diff_ms);
|
|
|
|
if (num_process_times_ <= options_.min_process_count) {
|
|
return 0;
|
|
}
|
|
|
|
if (IsOverusing()) {
|
|
// If the last thing we did was going up, and now have to back down, we need
|
|
// to check if this peak was short. If so we should back off to avoid going
|
|
// back and forth between this load, the system doesn't seem to handle it.
|
|
bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
|
|
if (check_for_backoff) {
|
|
if (now - last_rampup_time_ < kStandardRampUpDelayMs) {
|
|
// Going up was not ok for very long, back off.
|
|
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
|
|
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
|
|
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
|
|
} else {
|
|
// Not currently backing off, reset rampup delay.
|
|
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
|
|
}
|
|
}
|
|
|
|
last_overuse_time_ = now;
|
|
in_quick_rampup_ = false;
|
|
checks_above_threshold_ = 0;
|
|
|
|
if (observer_ != NULL)
|
|
observer_->OveruseDetected();
|
|
} else if (IsUnderusing(now)) {
|
|
last_rampup_time_ = now;
|
|
in_quick_rampup_ = true;
|
|
|
|
if (observer_ != NULL)
|
|
observer_->NormalUsage();
|
|
}
|
|
|
|
int rampup_delay =
|
|
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
LOG(LS_VERBOSE) << "Capture input stats: avg: " << capture_deltas_.Mean()
|
|
<< " std_dev " << capture_deltas_.StdDev()
|
|
<< " rampup delay " << rampup_delay
|
|
<< " overuse >= " << options_.high_capture_jitter_threshold_ms
|
|
<< " underuse < " << options_.low_capture_jitter_threshold_ms;
|
|
return 0;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsOverusing() {
|
|
bool overusing = false;
|
|
if (options_.enable_capture_jitter_method) {
|
|
overusing = capture_deltas_.StdDev() >=
|
|
options_.high_capture_jitter_threshold_ms;
|
|
} else if (options_.enable_encode_usage_method) {
|
|
overusing = encode_usage_->UsageInPercent() >=
|
|
options_.high_encode_usage_threshold_percent;
|
|
}
|
|
|
|
if (overusing) {
|
|
++checks_above_threshold_;
|
|
} else {
|
|
checks_above_threshold_ = 0;
|
|
}
|
|
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
|
|
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
if (time_now < last_rampup_time_ + delay)
|
|
return false;
|
|
|
|
bool underusing = false;
|
|
if (options_.enable_capture_jitter_method) {
|
|
underusing = capture_deltas_.StdDev() <
|
|
options_.low_capture_jitter_threshold_ms;
|
|
} else if (options_.enable_encode_usage_method) {
|
|
underusing = encode_usage_->UsageInPercent() <
|
|
options_.low_encode_usage_threshold_percent;
|
|
}
|
|
return underusing;
|
|
}
|
|
} // namespace webrtc
|