Files
platform-external-webrtc/modules/audio_processing/aec3/subtractor.cc
Per Åhgren 3e7b7b154b AEC3: Changes to initial behavior and handling of saturated echo
This CL introduces two related changes
1) It changes the way that the AEC3 determines whether the linear
filter is sufficiently good for its output to be used. The new scheme
achieves this much earlier than what was done in the legacy scheme.
2) It changes the way that saturated echo is and handled so that the
impact of the nearend speech is lower.

Bug: webrtc:9835,webrtc:9843,chromium:895435,chromium:895431
Change-Id: I0b493676886e2134205e9992bbe4badac7e414cc
Reviewed-on: https://webrtc-review.googlesource.com/c/104380
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#25208}
2018-10-16 13:22:44 +00:00

330 lines
12 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <numeric>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableAgcGainChangeResponse() {
return !field_trial::IsEnabled("WebRTC-Aec3AgcGainChangeResponseKillSwitch");
}
bool EnableAdaptationDuringSaturation() {
return !field_trial::IsEnabled("WebRTC-Aec3RapidAgcGainRecoveryKillSwitch");
}
bool EnableMisadjustmentEstimator() {
return !field_trial::IsEnabled("WebRTC-Aec3MisadjustmentEstimatorKillSwitch");
}
bool EnableShadowFilterJumpstart() {
return !field_trial::IsEnabled("WebRTC-Aec3ShadowFilterJumpstartKillSwitch");
}
bool EnableShadowFilterBoostedJumpstart() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ShadowFilterBoostedJumpstartKillSwitch");
}
bool EnableEarlyShadowFilterJumpstart() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EarlyShadowFilterJumpstartKillSwitch");
}
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
std::array<float, kBlockSize>* s,
bool adaptation_during_saturation,
bool* saturation) {
std::array<float, kFftLength> tmp;
fft.Ifft(S, &tmp);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(),
[&](float a, float b) { return a - b * kScale; });
*saturation = false;
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * tmp[k + kFftLengthBy2];
}
auto result = std::minmax_element(s->begin(), s->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!(*saturation)) {
auto result = std::minmax_element(e->begin(), e->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!adaptation_during_saturation) {
std::for_each(e->begin(), e->end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
} else {
*saturation = false;
}
}
void ScaleFilterOutput(rtc::ArrayView<const float> y,
float factor,
rtc::ArrayView<float> e,
rtc::ArrayView<float> s) {
RTC_DCHECK_EQ(y.size(), e.size());
RTC_DCHECK_EQ(y.size(), s.size());
for (size_t k = 0; k < y.size(); ++k) {
s[k] *= factor;
e[k] = y[k] - s[k];
}
}
} // namespace
Subtractor::Subtractor(const EchoCanceller3Config& config,
ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
config_(config),
adaptation_during_saturation_(EnableAdaptationDuringSaturation()),
enable_misadjustment_estimator_(EnableMisadjustmentEstimator()),
enable_agc_gain_change_response_(EnableAgcGainChangeResponse()),
enable_shadow_filter_jumpstart_(EnableShadowFilterJumpstart()),
enable_shadow_filter_boosted_jumpstart_(
EnableShadowFilterBoostedJumpstart()),
enable_early_shadow_filter_jumpstart_(EnableEarlyShadowFilterJumpstart()),
main_filter_(config_.filter.main.length_blocks,
config_.filter.main_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
shadow_filter_(config_.filter.shadow.length_blocks,
config_.filter.shadow_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
G_main_(config_.filter.main_initial,
config_.filter.config_change_duration_blocks),
G_shadow_(config_.filter.shadow_initial,
config.filter.config_change_duration_blocks) {
RTC_DCHECK(data_dumper_);
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange(echo_path_variability);
G_shadow_.HandleEchoPathChange();
G_main_.SetConfig(config_.filter.main_initial, true);
G_shadow_.SetConfig(config_.filter.shadow_initial, true);
main_filter_.SetSizePartitions(config_.filter.main_initial.length_blocks,
true);
shadow_filter_.SetSizePartitions(
config_.filter.shadow_initial.length_blocks, true);
};
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
}
if (echo_path_variability.gain_change && enable_agc_gain_change_response_) {
G_main_.HandleEchoPathChange(echo_path_variability);
}
}
void Subtractor::ExitInitialState() {
G_main_.SetConfig(config_.filter.main, false);
G_shadow_.SetConfig(config_.filter.shadow, false);
main_filter_.SetSizePartitions(config_.filter.main.length_blocks, false);
shadow_filter_.SetSizePartitions(config_.filter.shadow.length_blocks, false);
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the outputs of the main and shadow filters.
main_filter_.Filter(render_buffer, &S);
bool main_saturation = false;
PredictionError(fft_, S, y, &e_main, &output->s_main,
adaptation_during_saturation_, &main_saturation);
shadow_filter_.Filter(render_buffer, &S);
bool shadow_saturation = false;
PredictionError(fft_, S, y, &e_shadow, &output->s_shadow,
adaptation_during_saturation_, &shadow_saturation);
// Compute the signal powers in the subtractor output.
output->ComputeMetrics(y);
// Adjust the filter if needed.
bool main_filter_adjusted = false;
if (enable_misadjustment_estimator_) {
filter_misadjustment_estimator_.Update(*output);
if (filter_misadjustment_estimator_.IsAdjustmentNeeded()) {
float scale = filter_misadjustment_estimator_.GetMisadjustment();
main_filter_.ScaleFilter(scale);
ScaleFilterOutput(y, scale, e_main, output->s_main);
filter_misadjustment_estimator_.Reset();
main_filter_adjusted = true;
}
}
// Compute the FFts of the main and shadow filter outputs.
fft_.ZeroPaddedFft(e_main, Aec3Fft::Window::kHanning, &E_main);
fft_.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kHanning, &E_shadow);
// Compute spectra for future use.
E_shadow.Spectrum(optimization_, output->E2_shadow);
E_main.Spectrum(optimization_, output->E2_main);
// Compute the render powers.
std::array<float, kFftLengthBy2Plus1> X2_main;
std::array<float, kFftLengthBy2Plus1> X2_shadow_data;
std::array<float, kFftLengthBy2Plus1>& X2_shadow =
main_filter_.SizePartitions() == shadow_filter_.SizePartitions()
? X2_main
: X2_shadow_data;
if (main_filter_.SizePartitions() == shadow_filter_.SizePartitions()) {
render_buffer.SpectralSum(main_filter_.SizePartitions(), &X2_main);
} else if (main_filter_.SizePartitions() > shadow_filter_.SizePartitions()) {
render_buffer.SpectralSums(shadow_filter_.SizePartitions(),
main_filter_.SizePartitions(), &X2_shadow,
&X2_main);
} else {
render_buffer.SpectralSums(main_filter_.SizePartitions(),
shadow_filter_.SizePartitions(), &X2_main,
&X2_shadow);
}
// Update the main filter.
if (!main_filter_adjusted) {
G_main_.Compute(X2_main, render_signal_analyzer, *output, main_filter_,
aec_state.SaturatedCapture() || main_saturation, &G);
} else {
G.re.fill(0.f);
G.im.fill(0.f);
}
main_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
poor_shadow_filter_counter_ =
output->e2_main < output->e2_shadow ? poor_shadow_filter_counter_ + 1 : 0;
if (((poor_shadow_filter_counter_ < 5 &&
enable_early_shadow_filter_jumpstart_) ||
(poor_shadow_filter_counter_ < 10 &&
!enable_early_shadow_filter_jumpstart_)) ||
!enable_shadow_filter_jumpstart_) {
G_shadow_.Compute(X2_shadow, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture() || shadow_saturation, &G);
shadow_filter_.Adapt(render_buffer, G);
} else {
poor_shadow_filter_counter_ = 0;
if (enable_shadow_filter_boosted_jumpstart_) {
shadow_filter_.SetFilter(main_filter_.GetFilter());
G_shadow_.Compute(X2_shadow, render_signal_analyzer, E_main,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture() || main_saturation, &G);
shadow_filter_.Adapt(render_buffer, G);
} else {
G.re.fill(0.f);
G.im.fill(0.f);
shadow_filter_.Adapt(render_buffer, G);
shadow_filter_.SetFilter(main_filter_.GetFilter());
}
}
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
filter_misadjustment_estimator_.Dump(data_dumper_);
DumpFilters();
if (adaptation_during_saturation_) {
std::for_each(e_main.begin(), e_main.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
}
data_dumper_->DumpWav("aec3_main_filter_output", kBlockSize, &e_main[0],
16000, 1);
data_dumper_->DumpWav("aec3_shadow_filter_output", kBlockSize, &e_shadow[0],
16000, 1);
}
void Subtractor::FilterMisadjustmentEstimator::Update(
const SubtractorOutput& output) {
e2_acum_ += output.e2_main;
y2_acum_ += output.y2;
if (++n_blocks_acum_ == n_blocks_) {
if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) {
float update = (e2_acum_ / y2_acum_);
if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) {
// Duration equal to blockSizeMs * n_blocks_ * 4.
overhang_ = 4;
} else {
overhang_ = std::max(overhang_ - 1, 0);
}
if ((update < inv_misadjustment_) || (overhang_ > 0)) {
inv_misadjustment_ += 0.1f * (update - inv_misadjustment_);
}
}
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
}
}
void Subtractor::FilterMisadjustmentEstimator::Reset() {
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
inv_misadjustment_ = 0.f;
overhang_ = 0.f;
}
void Subtractor::FilterMisadjustmentEstimator::Dump(
ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_);
}
} // namespace webrtc