Parse the estimation parameters from the field trial string. BUG=webrtc:6690 Review-Url: https://codereview.webrtc.org/2489323002 Cr-Commit-Position: refs/heads/master@{#15126}
88 lines
2.8 KiB
C++
88 lines
2.8 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/congestion_controller/trendline_estimator.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
double LinearFitSlope(const std::list<std::pair<double, double>> points) {
|
|
RTC_DCHECK(points.size() >= 2);
|
|
// Compute the "center of mass".
|
|
double sum_x = 0;
|
|
double sum_y = 0;
|
|
for (const auto& point : points) {
|
|
sum_x += point.first;
|
|
sum_y += point.second;
|
|
}
|
|
double x_avg = sum_x / points.size();
|
|
double y_avg = sum_y / points.size();
|
|
// Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
|
|
double numerator = 0;
|
|
double denominator = 0;
|
|
for (const auto& point : points) {
|
|
numerator += (point.first - x_avg) * (point.second - y_avg);
|
|
denominator += (point.first - x_avg) * (point.first - x_avg);
|
|
}
|
|
return numerator / denominator;
|
|
}
|
|
} // namespace
|
|
|
|
enum { kDeltaCounterMax = 1000 };
|
|
|
|
TrendlineEstimator::TrendlineEstimator(size_t window_size,
|
|
double smoothing_coef,
|
|
double threshold_gain)
|
|
: window_size_(window_size),
|
|
smoothing_coef_(smoothing_coef),
|
|
threshold_gain_(threshold_gain),
|
|
num_of_deltas_(0),
|
|
accumulated_delay_(0),
|
|
smoothed_delay_(0),
|
|
delay_hist_(),
|
|
trendline_(0) {}
|
|
|
|
TrendlineEstimator::~TrendlineEstimator() {}
|
|
|
|
void TrendlineEstimator::Update(double recv_delta_ms,
|
|
double send_delta_ms,
|
|
double now_ms) {
|
|
const double delta_ms = recv_delta_ms - send_delta_ms;
|
|
++num_of_deltas_;
|
|
if (num_of_deltas_ > kDeltaCounterMax) {
|
|
num_of_deltas_ = kDeltaCounterMax;
|
|
}
|
|
|
|
// Exponential backoff filter.
|
|
accumulated_delay_ += delta_ms;
|
|
BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_);
|
|
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
|
|
(1 - smoothing_coef_) * accumulated_delay_;
|
|
BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_);
|
|
|
|
// Simple linear regression.
|
|
delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_));
|
|
if (delay_hist_.size() > window_size_) {
|
|
delay_hist_.pop_front();
|
|
}
|
|
if (delay_hist_.size() == window_size_) {
|
|
trendline_ = LinearFitSlope(delay_hist_);
|
|
}
|
|
|
|
BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_);
|
|
}
|
|
|
|
} // namespace webrtc
|