
This CL adds support for multichannel in the residual echo estimator code. It also adds placeholder functionality in the surrounding code to ensure that the residual echo estimator receives the require inputs. The changes in the CL has been shown to be bitexact on a large set of mono recordings. Bug: webrtc:10913 Change-Id: I726128ca928648b1dcf36c5f479eb243f3ff3f96 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/155361 Commit-Queue: Per Åhgren <peah@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Cr-Commit-Position: refs/heads/master@{#29400}
457 lines
17 KiB
C++
457 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/aec3_common.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/atomic_ops.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
|
|
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
|
|
|
|
} // namespace
|
|
|
|
int AecState::instance_count_ = 0;
|
|
|
|
void AecState::GetResidualEchoScaling(
|
|
rtc::ArrayView<float> residual_scaling) const {
|
|
bool filter_has_had_time_to_converge;
|
|
if (config_.filter.conservative_initial_phase) {
|
|
filter_has_had_time_to_converge =
|
|
strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
|
|
} else {
|
|
filter_has_had_time_to_converge =
|
|
strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
|
|
}
|
|
echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
|
|
residual_scaling);
|
|
}
|
|
|
|
absl::optional<float> AecState::ErleUncertainty() const {
|
|
if (SaturatedEcho()) {
|
|
return 1.f;
|
|
}
|
|
|
|
return absl::nullopt;
|
|
}
|
|
|
|
AecState::AecState(const EchoCanceller3Config& config,
|
|
size_t num_capture_channels)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
config_(config),
|
|
initial_state_(config_),
|
|
delay_state_(config_),
|
|
transparent_state_(config_),
|
|
filter_quality_state_(config_),
|
|
erl_estimator_(2 * kNumBlocksPerSecond),
|
|
erle_estimator_(2 * kNumBlocksPerSecond, config_, num_capture_channels),
|
|
filter_analyzer_(config_),
|
|
echo_audibility_(
|
|
config_.echo_audibility.use_stationarity_properties_at_init),
|
|
reverb_model_estimator_(config_),
|
|
subtractor_output_analyzers_(num_capture_channels) {}
|
|
|
|
AecState::~AecState() = default;
|
|
|
|
void AecState::HandleEchoPathChange(
|
|
const EchoPathVariability& echo_path_variability) {
|
|
const auto full_reset = [&]() {
|
|
filter_analyzer_.Reset();
|
|
capture_signal_saturation_ = false;
|
|
strong_not_saturated_render_blocks_ = 0;
|
|
blocks_with_active_render_ = 0;
|
|
initial_state_.Reset();
|
|
transparent_state_.Reset();
|
|
erle_estimator_.Reset(true);
|
|
erl_estimator_.Reset();
|
|
filter_quality_state_.Reset();
|
|
};
|
|
|
|
// TODO(peah): Refine the reset scheme according to the type of gain and
|
|
// delay adjustment.
|
|
|
|
if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kNone) {
|
|
full_reset();
|
|
} else if (echo_path_variability.gain_change) {
|
|
erle_estimator_.Reset(false);
|
|
}
|
|
for (auto& analyzer : subtractor_output_analyzers_) {
|
|
analyzer.HandleEchoPathChange();
|
|
}
|
|
}
|
|
|
|
void AecState::Update(
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
|
|
adaptive_filter_frequency_response,
|
|
const std::vector<float>& adaptive_filter_impulse_response,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& E2_main,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
rtc::ArrayView<const SubtractorOutput> subtractor_output) {
|
|
RTC_DCHECK_EQ(subtractor_output.size(), subtractor_output_analyzers_.size());
|
|
|
|
// Analyze the filter output.
|
|
for (size_t ch = 0; ch < subtractor_output.size(); ++ch) {
|
|
subtractor_output_analyzers_[ch].Update(subtractor_output[ch]);
|
|
}
|
|
|
|
// Analyze the properties of the filter.
|
|
filter_analyzer_.Update(adaptive_filter_impulse_response, render_buffer);
|
|
|
|
// Estimate the direct path delay of the filter.
|
|
if (config_.filter.use_linear_filter) {
|
|
delay_state_.Update(filter_analyzer_, external_delay,
|
|
strong_not_saturated_render_blocks_);
|
|
}
|
|
|
|
const std::vector<std::vector<float>>& aligned_render_block =
|
|
render_buffer.Block(-delay_state_.DirectPathFilterDelay())[0];
|
|
|
|
// Update render counters.
|
|
bool active_render = false;
|
|
for (size_t ch = 0; ch < aligned_render_block.size(); ++ch) {
|
|
const float render_energy = std::inner_product(
|
|
aligned_render_block[ch].begin(), aligned_render_block[ch].end(),
|
|
aligned_render_block[ch].begin(), 0.f);
|
|
if (render_energy > (config_.render_levels.active_render_limit *
|
|
config_.render_levels.active_render_limit) *
|
|
kFftLengthBy2) {
|
|
active_render = true;
|
|
break;
|
|
}
|
|
}
|
|
blocks_with_active_render_ += active_render ? 1 : 0;
|
|
strong_not_saturated_render_blocks_ +=
|
|
active_render && !SaturatedCapture() ? 1 : 0;
|
|
|
|
std::array<float, kFftLengthBy2Plus1> X2_reverb;
|
|
render_reverb_.Apply(render_buffer.GetSpectrumBuffer(),
|
|
delay_state_.DirectPathFilterDelay(), ReverbDecay(),
|
|
X2_reverb);
|
|
|
|
if (config_.echo_audibility.use_stationarity_properties) {
|
|
// Update the echo audibility evaluator.
|
|
echo_audibility_.Update(render_buffer,
|
|
render_reverb_.GetReverbContributionPowerSpectrum(),
|
|
delay_state_.DirectPathFilterDelay(),
|
|
delay_state_.ExternalDelayReported());
|
|
}
|
|
|
|
// Update the ERL and ERLE measures.
|
|
if (initial_state_.TransitionTriggered()) {
|
|
erle_estimator_.Reset(false);
|
|
}
|
|
|
|
// TODO(bugs.webrtc.org/10913): Take all channels into account.
|
|
const auto& X2 = render_buffer.Spectrum(delay_state_.DirectPathFilterDelay(),
|
|
/*channel=*/0);
|
|
const auto& X2_input_erle = X2_reverb;
|
|
|
|
erle_estimator_.Update(render_buffer, adaptive_filter_frequency_response,
|
|
X2_input_erle, Y2, E2_main,
|
|
subtractor_output_analyzers_[0].ConvergedFilter(),
|
|
config_.erle.onset_detection);
|
|
|
|
erl_estimator_.Update(subtractor_output_analyzers_[0].ConvergedFilter(), X2,
|
|
Y2);
|
|
|
|
// Detect and flag echo saturation.
|
|
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
|
|
UsableLinearEstimate(), subtractor_output,
|
|
EchoPathGain());
|
|
|
|
// Update the decision on whether to use the initial state parameter set.
|
|
initial_state_.Update(active_render, SaturatedCapture());
|
|
|
|
// Detect whether the transparent mode should be activated.
|
|
transparent_state_.Update(delay_state_.DirectPathFilterDelay(),
|
|
filter_analyzer_.Consistent(),
|
|
subtractor_output_analyzers_[0].ConvergedFilter(),
|
|
subtractor_output_analyzers_[0].DivergedFilter(),
|
|
active_render, SaturatedCapture());
|
|
|
|
// Analyze the quality of the filter.
|
|
filter_quality_state_.Update(
|
|
active_render, TransparentMode(), SaturatedCapture(),
|
|
filter_analyzer_.Consistent(), external_delay,
|
|
subtractor_output_analyzers_[0].ConvergedFilter());
|
|
|
|
// Update the reverb estimate.
|
|
const bool stationary_block =
|
|
config_.echo_audibility.use_stationarity_properties &&
|
|
echo_audibility_.IsBlockStationary();
|
|
|
|
reverb_model_estimator_.Update(filter_analyzer_.GetAdjustedFilter(),
|
|
adaptive_filter_frequency_response,
|
|
erle_estimator_.GetInstLinearQualityEstimate(),
|
|
delay_state_.DirectPathFilterDelay(),
|
|
UsableLinearEstimate(), stationary_block);
|
|
|
|
erle_estimator_.Dump(data_dumper_);
|
|
reverb_model_estimator_.Dump(data_dumper_.get());
|
|
data_dumper_->DumpRaw("aec3_erl", Erl());
|
|
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
|
|
data_dumper_->DumpRaw("aec3_erle", Erle()[0]);
|
|
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
|
|
data_dumper_->DumpRaw("aec3_transparent_mode", TransparentMode());
|
|
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
|
|
|
|
data_dumper_->DumpRaw("aec3_consistent_filter",
|
|
filter_analyzer_.Consistent());
|
|
data_dumper_->DumpRaw("aec3_initial_state",
|
|
initial_state_.InitialStateActive());
|
|
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
|
|
data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
|
|
data_dumper_->DumpRaw("aec3_converged_filter",
|
|
subtractor_output_analyzers_[0].ConvergedFilter());
|
|
data_dumper_->DumpRaw("aec3_diverged_filter",
|
|
subtractor_output_analyzers_[0].DivergedFilter());
|
|
|
|
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
|
|
external_delay ? 1 : 0);
|
|
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
|
|
GetReverbFrequencyResponse());
|
|
}
|
|
|
|
AecState::InitialState::InitialState(const EchoCanceller3Config& config)
|
|
: conservative_initial_phase_(config.filter.conservative_initial_phase),
|
|
initial_state_seconds_(config.filter.initial_state_seconds) {
|
|
Reset();
|
|
}
|
|
void AecState::InitialState::InitialState::Reset() {
|
|
initial_state_ = true;
|
|
strong_not_saturated_render_blocks_ = 0;
|
|
}
|
|
void AecState::InitialState::InitialState::Update(bool active_render,
|
|
bool saturated_capture) {
|
|
strong_not_saturated_render_blocks_ +=
|
|
active_render && !saturated_capture ? 1 : 0;
|
|
|
|
// Flag whether the initial state is still active.
|
|
bool prev_initial_state = initial_state_;
|
|
if (conservative_initial_phase_) {
|
|
initial_state_ =
|
|
strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
|
|
} else {
|
|
initial_state_ = strong_not_saturated_render_blocks_ <
|
|
initial_state_seconds_ * kNumBlocksPerSecond;
|
|
}
|
|
|
|
// Flag whether the transition from the initial state has started.
|
|
transition_triggered_ = !initial_state_ && prev_initial_state;
|
|
}
|
|
|
|
AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config)
|
|
: delay_headroom_samples_(config.delay.delay_headroom_samples) {}
|
|
|
|
void AecState::FilterDelay::Update(
|
|
const FilterAnalyzer& filter_analyzer,
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
size_t blocks_with_proper_filter_adaptation) {
|
|
// Update the delay based on the external delay.
|
|
if (external_delay &&
|
|
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
|
|
external_delay_ = external_delay;
|
|
external_delay_reported_ = true;
|
|
}
|
|
|
|
// Override the estimated delay if it is not certain that the filter has had
|
|
// time to converge.
|
|
const bool delay_estimator_may_not_have_converged =
|
|
blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
|
|
if (delay_estimator_may_not_have_converged && external_delay_) {
|
|
filter_delay_blocks_ = delay_headroom_samples_ / kBlockSize;
|
|
} else {
|
|
filter_delay_blocks_ = filter_analyzer.DelayBlocks();
|
|
}
|
|
}
|
|
|
|
AecState::TransparentMode::TransparentMode(const EchoCanceller3Config& config)
|
|
: bounded_erl_(config.ep_strength.bounded_erl),
|
|
linear_and_stable_echo_path_(
|
|
config.echo_removal_control.linear_and_stable_echo_path),
|
|
active_blocks_since_sane_filter_(kBlocksSinceConsistentEstimateInit),
|
|
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
|
|
|
|
void AecState::TransparentMode::Reset() {
|
|
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
|
|
diverged_sequence_size_ = 0;
|
|
strong_not_saturated_render_blocks_ = 0;
|
|
if (linear_and_stable_echo_path_) {
|
|
recent_convergence_during_activity_ = false;
|
|
}
|
|
}
|
|
|
|
void AecState::TransparentMode::Update(int filter_delay_blocks,
|
|
bool consistent_filter,
|
|
bool converged_filter,
|
|
bool diverged_filter,
|
|
bool active_render,
|
|
bool saturated_capture) {
|
|
++capture_block_counter_;
|
|
strong_not_saturated_render_blocks_ +=
|
|
active_render && !saturated_capture ? 1 : 0;
|
|
|
|
if (consistent_filter && filter_delay_blocks < 5) {
|
|
sane_filter_observed_ = true;
|
|
active_blocks_since_sane_filter_ = 0;
|
|
} else if (active_render) {
|
|
++active_blocks_since_sane_filter_;
|
|
}
|
|
|
|
bool sane_filter_recently_seen;
|
|
if (!sane_filter_observed_) {
|
|
sane_filter_recently_seen =
|
|
capture_block_counter_ <= 5 * kNumBlocksPerSecond;
|
|
} else {
|
|
sane_filter_recently_seen =
|
|
active_blocks_since_sane_filter_ <= 30 * kNumBlocksPerSecond;
|
|
}
|
|
|
|
if (converged_filter) {
|
|
recent_convergence_during_activity_ = true;
|
|
active_non_converged_sequence_size_ = 0;
|
|
non_converged_sequence_size_ = 0;
|
|
++num_converged_blocks_;
|
|
} else {
|
|
if (++non_converged_sequence_size_ > 20 * kNumBlocksPerSecond) {
|
|
num_converged_blocks_ = 0;
|
|
}
|
|
|
|
if (active_render &&
|
|
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
|
|
recent_convergence_during_activity_ = false;
|
|
}
|
|
}
|
|
|
|
if (!diverged_filter) {
|
|
diverged_sequence_size_ = 0;
|
|
} else if (++diverged_sequence_size_ >= 60) {
|
|
// TODO(peah): Change these lines to ensure proper triggering of usable
|
|
// filter.
|
|
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
|
|
}
|
|
|
|
if (active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
|
|
finite_erl_recently_detected_ = false;
|
|
}
|
|
if (num_converged_blocks_ > 50) {
|
|
finite_erl_recently_detected_ = true;
|
|
}
|
|
|
|
if (bounded_erl_) {
|
|
transparency_activated_ = false;
|
|
} else if (finite_erl_recently_detected_) {
|
|
transparency_activated_ = false;
|
|
} else if (sane_filter_recently_seen && recent_convergence_during_activity_) {
|
|
transparency_activated_ = false;
|
|
} else {
|
|
const bool filter_should_have_converged =
|
|
strong_not_saturated_render_blocks_ > 6 * kNumBlocksPerSecond;
|
|
transparency_activated_ = filter_should_have_converged;
|
|
}
|
|
}
|
|
|
|
AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
|
|
const EchoCanceller3Config& config) {}
|
|
|
|
void AecState::FilteringQualityAnalyzer::Reset() {
|
|
usable_linear_estimate_ = false;
|
|
filter_update_blocks_since_reset_ = 0;
|
|
}
|
|
|
|
void AecState::FilteringQualityAnalyzer::Update(
|
|
bool active_render,
|
|
bool transparent_mode,
|
|
bool saturated_capture,
|
|
bool consistent_estimate_,
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
bool converged_filter) {
|
|
// Update blocks counter.
|
|
const bool filter_update = active_render && !saturated_capture;
|
|
filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
|
|
filter_update_blocks_since_start_ += filter_update ? 1 : 0;
|
|
|
|
// Store convergence flag when observed.
|
|
convergence_seen_ = convergence_seen_ || converged_filter;
|
|
|
|
// Verify requirements for achieving a decent filter. The requirements for
|
|
// filter adaptation at call startup are more restrictive than after an
|
|
// in-call reset.
|
|
const bool sufficient_data_to_converge_at_startup =
|
|
filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
|
|
const bool sufficient_data_to_converge_at_reset =
|
|
sufficient_data_to_converge_at_startup &&
|
|
filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
|
|
|
|
// The linear filter can only be used it has had time to converge.
|
|
usable_linear_estimate_ = sufficient_data_to_converge_at_startup &&
|
|
sufficient_data_to_converge_at_reset;
|
|
|
|
// The linear filter can only be used if an external delay or convergence have
|
|
// been identified
|
|
usable_linear_estimate_ =
|
|
usable_linear_estimate_ && (external_delay || convergence_seen_);
|
|
|
|
// If transparent mode is on, deactivate usign the linear filter.
|
|
usable_linear_estimate_ = usable_linear_estimate_ && !transparent_mode;
|
|
}
|
|
|
|
void AecState::SaturationDetector::Update(
|
|
rtc::ArrayView<const std::vector<float>> x,
|
|
bool saturated_capture,
|
|
bool usable_linear_estimate,
|
|
rtc::ArrayView<const SubtractorOutput> subtractor_output,
|
|
float echo_path_gain) {
|
|
saturated_echo_ = false;
|
|
if (!saturated_capture) {
|
|
return;
|
|
}
|
|
|
|
if (usable_linear_estimate) {
|
|
constexpr float kSaturationThreshold = 20000.f;
|
|
for (size_t ch = 0; ch < subtractor_output.size(); ++ch) {
|
|
saturated_echo_ =
|
|
saturated_echo_ ||
|
|
(subtractor_output[ch].s_main_max_abs > kSaturationThreshold ||
|
|
subtractor_output[ch].s_shadow_max_abs > kSaturationThreshold);
|
|
}
|
|
} else {
|
|
float max_sample = 0.f;
|
|
for (auto& channel : x) {
|
|
for (float sample : channel) {
|
|
max_sample = std::max(max_sample, fabsf(sample));
|
|
}
|
|
}
|
|
|
|
const float kMargin = 10.f;
|
|
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
|
|
saturated_echo_ = saturated_echo_ || peak_echo_amplitude > 32000;
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|