Files
platform-external-webrtc/webrtc/modules/audio_coding/neteq/payload_splitter_unittest.cc
kwiberg ee1879ca40 Make an enum class out of NetEqDecoder, and hide the neteq_decoders_ table
This operation was relatively simple, since no one was doing anything
fishy with this enum. A large number of lines had to be changed
because the enum values now live in their own namespace, but this is
arguably worth it since it is now much clearer what sort of constant
they are.

BUG=webrtc:5028

Review URL: https://codereview.webrtc.org/1424083002

Cr-Commit-Position: refs/heads/master@{#10449}
2015-10-29 13:20:33 +00:00

863 lines
32 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PayloadSplitter class.
#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
#include <assert.h>
#include <utility> // pair
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
using ::testing::Return;
using ::testing::ReturnNull;
namespace webrtc {
static const int kRedPayloadType = 100;
static const size_t kPayloadLength = 10;
static const size_t kRedHeaderLength = 4; // 4 bytes RED header.
static const uint16_t kSequenceNumber = 0;
static const uint32_t kBaseTimestamp = 0x12345678;
// A possible Opus packet that contains FEC is the following.
// The frame is 20 ms in duration.
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
// | Compressed frame 1 (N-2 bytes)... :
// : |
// | |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
void CreateOpusFecPayload(uint8_t* payload, size_t payload_length,
uint8_t payload_value) {
if (payload_length < 2) {
return;
}
payload[0] = 0x08;
payload[1] = 0x40;
memset(&payload[2], payload_value, payload_length - 2);
}
// RED headers (according to RFC 2198):
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |F| block PT | timestamp offset | block length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Last RED header:
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |0| Block PT |
// +-+-+-+-+-+-+-+-+
// Creates a RED packet, with |num_payloads| payloads, with payload types given
// by the values in array |payload_types| (which must be of length
// |num_payloads|). Each redundant payload is |timestamp_offset| samples
// "behind" the the previous payload.
Packet* CreateRedPayload(size_t num_payloads,
uint8_t* payload_types,
int timestamp_offset,
bool embed_opus_fec = false) {
Packet* packet = new Packet;
packet->header.payloadType = kRedPayloadType;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = (kPayloadLength + 1) +
(num_payloads - 1) * (kPayloadLength + kRedHeaderLength);
uint8_t* payload = new uint8_t[packet->payload_length];
uint8_t* payload_ptr = payload;
for (size_t i = 0; i < num_payloads; ++i) {
// Write the RED headers.
if (i == num_payloads - 1) {
// Special case for last payload.
*payload_ptr = payload_types[i] & 0x7F; // F = 0;
++payload_ptr;
break;
}
*payload_ptr = payload_types[i] & 0x7F;
// Not the last block; set F = 1.
*payload_ptr |= 0x80;
++payload_ptr;
int this_offset = (num_payloads - i - 1) * timestamp_offset;
*payload_ptr = this_offset >> 6;
++payload_ptr;
assert(kPayloadLength <= 1023); // Max length described by 10 bits.
*payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8);
++payload_ptr;
*payload_ptr = kPayloadLength & 0xFF;
++payload_ptr;
}
for (size_t i = 0; i < num_payloads; ++i) {
// Write |i| to all bytes in each payload.
if (embed_opus_fec) {
CreateOpusFecPayload(payload_ptr, kPayloadLength,
static_cast<uint8_t>(i));
} else {
memset(payload_ptr, static_cast<int>(i), kPayloadLength);
}
payload_ptr += kPayloadLength;
}
packet->payload = payload;
return packet;
}
// Create a packet with all payload bytes set to |payload_value|.
Packet* CreatePacket(uint8_t payload_type, size_t payload_length,
uint8_t payload_value, bool opus_fec = false) {
Packet* packet = new Packet;
packet->header.payloadType = payload_type;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = payload_length;
uint8_t* payload = new uint8_t[packet->payload_length];
packet->payload = payload;
if (opus_fec) {
CreateOpusFecPayload(packet->payload, packet->payload_length,
payload_value);
} else {
memset(payload, payload_value, payload_length);
}
return packet;
}
// Checks that |packet| has the attributes given in the remaining parameters.
void VerifyPacket(const Packet* packet,
size_t payload_length,
uint8_t payload_type,
uint16_t sequence_number,
uint32_t timestamp,
uint8_t payload_value,
bool primary = true) {
EXPECT_EQ(payload_length, packet->payload_length);
EXPECT_EQ(payload_type, packet->header.payloadType);
EXPECT_EQ(sequence_number, packet->header.sequenceNumber);
EXPECT_EQ(timestamp, packet->header.timestamp);
EXPECT_EQ(primary, packet->primary);
ASSERT_FALSE(packet->payload == NULL);
for (size_t i = 0; i < packet->payload_length; ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
}
}
// Start of test definitions.
TEST(PayloadSplitter, CreateAndDestroy) {
PayloadSplitter* splitter = new PayloadSplitter;
delete splitter;
}
// Packet A is split into A1 and A2.
TEST(RedPayloadSplitter, OnePacketTwoPayloads) {
uint8_t payload_types[] = {0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet. The first in list should always be the primary payload.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp, 1, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
}
// Packets A and B are not split at all. Only the RED header in each packet is
// removed.
TEST(RedPayloadSplitter, TwoPacketsOnePayload) {
uint8_t payload_types[] = {0};
const int kTimestampOffset = 160;
// Create first packet, with a single RED payload.
Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create second packet, with a single RED payload.
packet = CreateRedPayload(1, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 0, true);
delete [] packet->payload;
delete packet;
}
// Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with
// attributes as follows:
//
// A1* A2 A3 B1* B2 B3
// Payload type 0 1 2 0 1 2
// Timestamp b b-o b-2o b+o b b-o
// Sequence number 0 0 0 1 1 1
//
// b = kBaseTimestamp, o = kTimestampOffset, * = primary.
TEST(RedPayloadSplitter, TwoPacketsThreePayloads) {
uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one.
const int kTimestampOffset = 160;
// Create first packet, with 3 RED payloads.
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create first packet, with 3 RED payloads.
packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(6u, packet_list.size());
// Check first packet, A1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber,
kBaseTimestamp, 2, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet, A2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 1, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet, A3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet, B1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 2, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fifth packet, B2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1,
kBaseTimestamp, 1, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check sixth packet, B3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp - kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
}
// Creates a list with 4 packets with these payload types:
// 0 = CNGnb
// 1 = PCMu
// 2 = DTMF (AVT)
// 3 = iLBC
// We expect the method CheckRedPayloads to discard the iLBC packet, since it
// is a non-CNG, non-DTMF payload of another type than the first speech payload
// found in the list (which is PCMu).
TEST(RedPayloadSplitter, CheckRedPayloads) {
PacketList packet_list;
for (uint8_t i = 0; i <= 3; ++i) {
// Create packet with payload type |i|, payload length 10 bytes, all 0.
Packet* packet = CreatePacket(i, 10, 0);
packet_list.push_back(packet);
}
// Use a real DecoderDatabase object here instead of a mock, since it is
// easier to just register the payload types and let the actual implementation
// do its job.
DecoderDatabase decoder_database;
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderCNGnb);
decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu);
decoder_database.RegisterPayload(2, NetEqDecoder::kDecoderAVT);
decoder_database.RegisterPayload(3, NetEqDecoder::kDecoderILBC);
PayloadSplitter splitter;
splitter.CheckRedPayloads(&packet_list, decoder_database);
ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet.
// Verify packets. The loop verifies that payload types 0, 1, and 2 are in the
// list.
for (int i = 0; i <= 2; ++i) {
Packet* packet = packet_list.front();
VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
EXPECT_TRUE(packet_list.empty());
}
// Packet A is split into A1, A2 and A3. But the length parameter is off, so
// the last payloads should be discarded.
TEST(RedPayloadSplitter, WrongPayloadLength) {
uint8_t payload_types[] = {0, 0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually tamper with the payload length of the packet.
// This is one byte too short for the second payload (out of three).
// We expect only the first payload to be returned.
packet->payload_length -= kPayloadLength + 1;
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kRedLengthMismatch,
splitter.SplitRed(&packet_list));
ASSERT_EQ(1u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
// Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not
// get split.
TEST(AudioPayloadSplitter, NonSplittable) {
// Set up packets with different RTP payload types. The actual values do not
// matter, since we are mocking the decoder database anyway.
PacketList packet_list;
for (uint8_t i = 0; i < 6; ++i) {
// Let the payload type be |i|, and the payload value 10 * |i|.
packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info0(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISAC, 16000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(info0.get()));
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info1(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISACswb, 32000,
NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(1))
.WillRepeatedly(Return(info1.get()));
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info2(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderRED, 8000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(2))
.WillRepeatedly(Return(info2.get()));
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info3(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderAVT, 8000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(3))
.WillRepeatedly(Return(info3.get()));
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info4(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderCNGnb, 8000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(4))
.WillRepeatedly(Return(info4.get()));
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info5(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderArbitrary, 8000,
NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(5))
.WillRepeatedly(Return(info5.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(6u, packet_list.size());
// Check that all payloads are intact.
uint8_t payload_type = 0;
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber,
kBaseTimestamp, 10 * payload_type);
++payload_type;
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test unknown payload type.
TEST(AudioPayloadSplitter, UnknownPayloadType) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 4711; // Random number.
packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0));
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return NULL when asked for decoder info.
// This signals that the decoder database does not recognize the payload type.
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(ReturnNull());
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kUnknownPayloadType,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
class SplitBySamplesTest : public ::testing::TestWithParam<NetEqDecoder> {
protected:
virtual void SetUp() {
decoder_type_ = GetParam();
switch (decoder_type_) {
case NetEqDecoder::kDecoderPCMu:
case NetEqDecoder::kDecoderPCMa:
bytes_per_ms_ = 8;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderPCMu_2ch:
case NetEqDecoder::kDecoderPCMa_2ch:
bytes_per_ms_ = 2 * 8;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderG722:
bytes_per_ms_ = 8;
samples_per_ms_ = 16;
break;
case NetEqDecoder::kDecoderPCM16B:
bytes_per_ms_ = 16;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderPCM16Bwb:
bytes_per_ms_ = 32;
samples_per_ms_ = 16;
break;
case NetEqDecoder::kDecoderPCM16Bswb32kHz:
bytes_per_ms_ = 64;
samples_per_ms_ = 32;
break;
case NetEqDecoder::kDecoderPCM16Bswb48kHz:
bytes_per_ms_ = 96;
samples_per_ms_ = 48;
break;
case NetEqDecoder::kDecoderPCM16B_2ch:
bytes_per_ms_ = 2 * 16;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderPCM16Bwb_2ch:
bytes_per_ms_ = 2 * 32;
samples_per_ms_ = 16;
break;
case NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch:
bytes_per_ms_ = 2 * 64;
samples_per_ms_ = 32;
break;
case NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch:
bytes_per_ms_ = 2 * 96;
samples_per_ms_ = 48;
break;
case NetEqDecoder::kDecoderPCM16B_5ch:
bytes_per_ms_ = 5 * 16;
samples_per_ms_ = 8;
break;
default:
assert(false);
break;
}
}
size_t bytes_per_ms_;
int samples_per_ms_;
NetEqDecoder decoder_type_;
};
// Test splitting sample-based payloads.
TEST_P(SplitBySamplesTest, PayloadSizes) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) {
// The payload values are set to be the same as the payload_size, so that
// one can distinguish from which packet the split payloads come from.
size_t payload_size_bytes = payload_size_ms * bytes_per_ms_;
packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes,
payload_size_ms));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
// (Sample rate is set to 8000 Hz, but does not matter.)
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(decoder_type_, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
// The payloads are expected to be split as follows:
// 10 ms -> 10 ms
// 20 ms -> 20 ms
// 30 ms -> 30 ms
// 40 ms -> 20 + 20 ms
// 50 ms -> 25 + 25 ms
// 60 ms -> 30 + 30 ms
int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30};
int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60};
int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30};
size_t expected_num_packets =
sizeof(expected_size_ms) / sizeof(expected_size_ms[0]);
EXPECT_EQ(expected_num_packets, packet_list.size());
PacketList::iterator it = packet_list.begin();
int i = 0;
while (it != packet_list.end()) {
size_t length_bytes = expected_size_ms[i] * bytes_per_ms_;
uint32_t expected_timestamp = kBaseTimestamp +
expected_timestamp_offset_ms[i] * samples_per_ms_;
VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber,
expected_timestamp, expected_payload_value[i]);
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
++i;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
INSTANTIATE_TEST_CASE_P(
PayloadSplitter,
SplitBySamplesTest,
::testing::Values(NetEqDecoder::kDecoderPCMu,
NetEqDecoder::kDecoderPCMa,
NetEqDecoder::kDecoderPCMu_2ch,
NetEqDecoder::kDecoderPCMa_2ch,
NetEqDecoder::kDecoderG722,
NetEqDecoder::kDecoderPCM16B,
NetEqDecoder::kDecoderPCM16Bwb,
NetEqDecoder::kDecoderPCM16Bswb32kHz,
NetEqDecoder::kDecoderPCM16Bswb48kHz,
NetEqDecoder::kDecoderPCM16B_2ch,
NetEqDecoder::kDecoderPCM16Bwb_2ch,
NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch,
NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch,
NetEqDecoder::kDecoderPCM16B_5ch));
class SplitIlbcTest : public ::testing::TestWithParam<std::pair<int, int> > {
protected:
virtual void SetUp() {
const std::pair<int, int> parameters = GetParam();
num_frames_ = parameters.first;
frame_length_ms_ = parameters.second;
frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50;
}
size_t num_frames_;
int frame_length_ms_;
size_t frame_length_bytes_;
};
// Test splitting sample-based payloads.
TEST_P(SplitIlbcTest, NumFrames) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
const int frame_length_samples = frame_length_ms_ * 8;
size_t payload_length_bytes = frame_length_bytes_ * num_frames_;
Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0);
// Fill payload with increasing integers {0, 1, 2, ...}.
for (size_t i = 0; i < packet->payload_length; ++i) {
packet->payload[i] = static_cast<uint8_t>(i);
}
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, 8000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(num_frames_, packet_list.size());
PacketList::iterator it = packet_list.begin();
int frame_num = 0;
uint8_t payload_value = 0;
while (it != packet_list.end()) {
Packet* packet = (*it);
EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num,
packet->header.timestamp);
EXPECT_EQ(frame_length_bytes_, packet->payload_length);
EXPECT_EQ(kPayloadType, packet->header.payloadType);
EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber);
EXPECT_EQ(true, packet->primary);
ASSERT_FALSE(packet->payload == NULL);
for (size_t i = 0; i < packet->payload_length; ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
++payload_value;
}
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
++frame_num;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test 1 through 5 frames of 20 and 30 ms size.
// Also test the maximum number of frames in one packet for 20 and 30 ms.
// The maximum is defined by the largest payload length that can be uniquely
// resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms).
INSTANTIATE_TEST_CASE_P(
PayloadSplitter, SplitIlbcTest,
::testing::Values(std::pair<int, int>(1, 20), // 1 frame, 20 ms.
std::pair<int, int>(2, 20), // 2 frames, 20 ms.
std::pair<int, int>(3, 20), // And so on.
std::pair<int, int>(4, 20),
std::pair<int, int>(5, 20),
std::pair<int, int>(24, 20),
std::pair<int, int>(1, 30),
std::pair<int, int>(2, 30),
std::pair<int, int>(3, 30),
std::pair<int, int>(4, 30),
std::pair<int, int>(5, 30),
std::pair<int, int>(18, 30)));
// Test too large payload size.
TEST(IlbcPayloadSplitter, TooLargePayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 950;
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, 8000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kTooLargePayload,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Payload not an integer number of frames.
TEST(IlbcPayloadSplitter, UnevenPayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 39; // Not an even number of frames.
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
rtc::scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, 8000, NULL,
false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kFrameSplitError,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
TEST(FecPayloadSplitter, MixedPayload) {
PacketList packet_list;
DecoderDatabase decoder_database;
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus);
decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu);
Packet* packet = CreatePacket(0, 10, 0xFF, true);
packet_list.push_back(packet);
packet = CreatePacket(0, 10, 0); // Non-FEC Opus payload.
packet_list.push_back(packet);
packet = CreatePacket(1, 10, 0); // Non-Opus payload.
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitFec(&packet_list, &decoder_database));
EXPECT_EQ(4u, packet_list.size());
// Check first packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - 20 * 48, packet->header.timestamp);
EXPECT_EQ(10U, packet->payload_length);
EXPECT_FALSE(packet->primary);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp, packet->header.timestamp);
EXPECT_EQ(10U, packet->payload_length);
EXPECT_TRUE(packet->primary);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 0, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 1, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
}
TEST(FecPayloadSplitter, EmbedFecInRed) {
PacketList packet_list;
DecoderDatabase decoder_database;
const int kTimestampOffset = 20 * 48; // 20 ms * 48 kHz.
uint8_t payload_types[] = {0, 0};
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus);
Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset, true);
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitRed(&packet_list));
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitFec(&packet_list, &decoder_database));
EXPECT_EQ(4u, packet_list.size());
// Check first packet. FEC packet copied from primary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload_length);
EXPECT_FALSE(packet->primary);
EXPECT_EQ(packet->payload[3], 1);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet. Normal packet copied from primary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload_length);
EXPECT_TRUE(packet->primary);
EXPECT_EQ(packet->payload[3], 1);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet. FEC packet copied from secondary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - 2 * kTimestampOffset, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload_length);
EXPECT_FALSE(packet->primary);
EXPECT_EQ(packet->payload[3], 0);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet. Normal packet copied from primary payload in RED.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp);
EXPECT_EQ(kPayloadLength, packet->payload_length);
EXPECT_TRUE(packet->primary);
EXPECT_EQ(packet->payload[3], 0);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
} // namespace webrtc