
- Added files to gyp and BUILD - Made minor fixes to get everything to compile and intelligibility_proc to run - Added comments - Auto-reformatting Original cl is at: https://webrtc-codereview.appspot.com/57579004/ TBR=aluebs@webrtc.org Review URL: https://codereview.webrtc.org/1182323005. Cr-Commit-Position: refs/heads/master@{#9454}
138 lines
5.1 KiB
C++
138 lines
5.1 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
//
|
|
// Specifies helper classes for intelligibility enhancement.
|
|
//
|
|
|
|
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|
|
#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|
|
|
|
#include <complex>
|
|
|
|
#include "webrtc/base/scoped_ptr.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace intelligibility {
|
|
|
|
// Internal helper for computing the variances of a stream of arrays.
|
|
// The result is an array of variances per position: the i-th variance
|
|
// is the variance of the stream of data on the i-th positions in the
|
|
// input arrays.
|
|
// There are four methods of computation:
|
|
// * kStepInfinite computes variances from the beginning onwards
|
|
// * kStepDecaying uses a recursive exponential decay formula with a
|
|
// settable forgetting factor
|
|
// * kStepWindowed computes variances within a moving window
|
|
// * kStepBlocked is similar to kStepWindowed, but history is kept
|
|
// as a rolling window of blocks: multiple input elements are used for
|
|
// one block and the history then consists of the variances of these blocks
|
|
// with the same effect as kStepWindowed, but less storage, so the window
|
|
// can be longer
|
|
class VarianceArray {
|
|
public:
|
|
enum StepType {
|
|
kStepInfinite = 0,
|
|
kStepDecaying,
|
|
kStepWindowed,
|
|
kStepBlocked
|
|
};
|
|
|
|
// Construct an instance for the given input array length (|freqs|) and
|
|
// computation algorithm (|type|), with the appropriate parameters.
|
|
// |window_size| is the number of samples for kStepWindowed and
|
|
// the number of blocks for kStepBlocked. |decay| is the forgetting factor
|
|
// for kStepDecaying.
|
|
VarianceArray(int freqs, StepType type, int window_size, float decay);
|
|
|
|
// Add a new data point to the series and compute the new variances.
|
|
// TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
|
|
// whether they should skip adding some small dummy values to the input
|
|
// to prevent problems with all-zero inputs. Can probably be removed.
|
|
void Step(const std::complex<float>* data, bool skip_fudge = false) {
|
|
(this->*step_func_)(data, skip_fudge);
|
|
}
|
|
// Reset variances to zero and forget all history.
|
|
void Clear();
|
|
// Scale the input data by |scale|. Effectively multiply variances
|
|
// by |scale^2|.
|
|
void ApplyScale(float scale);
|
|
|
|
// The current set of variances.
|
|
const float* variance() const { return variance_.get(); }
|
|
|
|
// The mean value of the current set of variances.
|
|
float array_mean() const { return array_mean_; }
|
|
|
|
private:
|
|
void InfiniteStep(const std::complex<float>* data, bool dummy);
|
|
void DecayStep(const std::complex<float>* data, bool dummy);
|
|
void WindowedStep(const std::complex<float>* data, bool dummy);
|
|
void BlockedStep(const std::complex<float>* data, bool dummy);
|
|
|
|
// TODO(ekmeyerson): Switch the following running means
|
|
// and histories from rtc::scoped_ptr to std::vector.
|
|
|
|
// The current average X and X^2.
|
|
rtc::scoped_ptr<std::complex<float>[]> running_mean_;
|
|
rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
|
|
|
|
// Average X and X^2 for the current block in kStepBlocked.
|
|
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
|
|
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
|
|
|
|
// Sample history for the rolling window in kStepWindowed and block-wise
|
|
// histories for kStepBlocked.
|
|
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
|
|
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
|
|
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
|
|
|
|
// The current set of variances and sums for Welford's algorithm.
|
|
rtc::scoped_ptr<float[]> variance_;
|
|
rtc::scoped_ptr<float[]> conj_sum_;
|
|
|
|
const int freqs_;
|
|
const int window_size_;
|
|
const float decay_;
|
|
int history_cursor_;
|
|
int count_;
|
|
float array_mean_;
|
|
void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
|
|
};
|
|
|
|
// Helper class for smoothing gain changes. On each applicatiion step, the
|
|
// currently used gains are changed towards a set of settable target gains,
|
|
// constrained by a limit on the magnitude of the changes.
|
|
class GainApplier {
|
|
public:
|
|
GainApplier(int freqs, float change_limit);
|
|
|
|
// Copy |in_block| to |out_block|, multiplied by the current set of gains,
|
|
// and step the current set of gains towards the target set.
|
|
void Apply(const std::complex<float>* in_block,
|
|
std::complex<float>* out_block);
|
|
|
|
// Return the current target gain set. Modify this array to set the targets.
|
|
float* target() const { return target_.get(); }
|
|
|
|
private:
|
|
const int freqs_;
|
|
const float change_limit_;
|
|
rtc::scoped_ptr<float[]> target_;
|
|
rtc::scoped_ptr<float[]> current_;
|
|
};
|
|
|
|
} // namespace intelligibility
|
|
|
|
} // namespace webrtc
|
|
|
|
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|