
- test_utils.h/.cc simplified - webrtc::rnnvad::test -> webrtc::rnnvad - all unit test code inside the anonymous namespace - names improved Bug: webrtc:10480 Change-Id: I0a0f056f9728bb8a1b93006b95d7ed5bf5bd4adb Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/196509 Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Cr-Commit-Position: refs/heads/master@{#32789}
71 lines
2.6 KiB
C++
71 lines
2.6 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/rnn_vad/rnn.h"
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/cpu_features.h"
|
|
#include "modules/audio_processing/agc2/rnn_vad/common.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace rnn_vad {
|
|
namespace {
|
|
|
|
constexpr std::array<float, kFeatureVectorSize> kFeatures = {
|
|
-1.00131f, -0.627069f, -7.81097f, 7.86285f, -2.87145f, 3.32365f,
|
|
-0.653161f, 0.529839f, -0.425307f, 0.25583f, 0.235094f, 0.230527f,
|
|
-0.144687f, 0.182785f, 0.57102f, 0.125039f, 0.479482f, -0.0255439f,
|
|
-0.0073141f, -0.147346f, -0.217106f, -0.0846906f, -8.34943f, 3.09065f,
|
|
1.42628f, -0.85235f, -0.220207f, -0.811163f, 2.09032f, -2.01425f,
|
|
-0.690268f, -0.925327f, -0.541354f, 0.58455f, -0.606726f, -0.0372358f,
|
|
0.565991f, 0.435854f, 0.420812f, 0.162198f, -2.13f, 10.0089f};
|
|
|
|
void WarmUpRnnVad(RnnVad& rnn_vad) {
|
|
for (int i = 0; i < 10; ++i) {
|
|
rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
|
}
|
|
}
|
|
|
|
// Checks that the speech probability is zero with silence.
|
|
TEST(RnnVadTest, CheckZeroProbabilityWithSilence) {
|
|
RnnVad rnn_vad(GetAvailableCpuFeatures());
|
|
WarmUpRnnVad(rnn_vad);
|
|
EXPECT_EQ(rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/true), 0.f);
|
|
}
|
|
|
|
// Checks that the same output is produced after reset given the same input
|
|
// sequence.
|
|
TEST(RnnVadTest, CheckRnnVadReset) {
|
|
RnnVad rnn_vad(GetAvailableCpuFeatures());
|
|
WarmUpRnnVad(rnn_vad);
|
|
float pre = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
|
rnn_vad.Reset();
|
|
WarmUpRnnVad(rnn_vad);
|
|
float post = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
|
EXPECT_EQ(pre, post);
|
|
}
|
|
|
|
// Checks that the same output is produced after silence is observed given the
|
|
// same input sequence.
|
|
TEST(RnnVadTest, CheckRnnVadSilence) {
|
|
RnnVad rnn_vad(GetAvailableCpuFeatures());
|
|
WarmUpRnnVad(rnn_vad);
|
|
float pre = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
|
rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/true);
|
|
WarmUpRnnVad(rnn_vad);
|
|
float post = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
|
EXPECT_EQ(pre, post);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace rnn_vad
|
|
} // namespace webrtc
|