Files
platform-external-webrtc/webrtc/modules/video_capture/video_capture_impl.cc
perkj@webrtc.org bcead305a2 Make the entry point for VideoFrames to webrtc const ref I420VideoFrame.
This removes the none const pointer entry and SwapFrame.

Since frames delivered using VideoSendStream no longer use the external capture module, VideoSendStream will not get an incoming framerate callback. VideoSendStream now uses a rtc::RateTracker.
Also, the video engine must ensure that time stamps are always increasing.

With this, time stamps (ntp, render_time and rtp timestamps ) are checked and set in ViECapturer::OnIncomingCapturedFrame

BUG=1128
R=magjed@webrtc.org, mflodman@webrtc.org, pbos@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/46429004

Cr-Commit-Position: refs/heads/master@{#8633}
git-svn-id: http://webrtc.googlecode.com/svn/trunk@8633 4adac7df-926f-26a2-2b94-8c16560cd09d
2015-03-06 12:38:22 +00:00

428 lines
12 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_capture/video_capture_impl.h"
#include <stdlib.h>
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/modules/video_capture/video_capture_config.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/ref_count.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
namespace webrtc
{
// Converting the rotation mode from capturemodule's to I420VideoFrame's define.
VideoRotation ConvertRotation(VideoRotationMode rotation) {
switch (rotation) {
case kRotateNone:
return kVideoRotation_0;
case kRotate90:
return kVideoRotation_90;
case kRotate180:
return kVideoRotation_180;
case kRotate270:
return kVideoRotation_270;
}
assert(false);
return kVideoRotation_0;
}
namespace videocapturemodule
{
VideoCaptureModule* VideoCaptureImpl::Create(
const int32_t id,
VideoCaptureExternal*& externalCapture)
{
RefCountImpl<VideoCaptureImpl>* implementation =
new RefCountImpl<VideoCaptureImpl>(id);
externalCapture = implementation;
return implementation;
}
const char* VideoCaptureImpl::CurrentDeviceName() const
{
return _deviceUniqueId;
}
// static
int32_t VideoCaptureImpl::RotationFromDegrees(int degrees,
VideoRotation* rotation) {
switch (degrees) {
case 0:
*rotation = kVideoRotation_0;
return 0;
case 90:
*rotation = kVideoRotation_90;
return 0;
case 180:
*rotation = kVideoRotation_180;
return 0;
case 270:
*rotation = kVideoRotation_270;
return 0;
default:
return -1;;
}
}
// static
int32_t VideoCaptureImpl::RotationInDegrees(VideoRotation rotation,
int* degrees) {
switch (rotation) {
case kVideoRotation_0:
*degrees = 0;
return 0;
case kVideoRotation_90:
*degrees = 90;
return 0;
case kVideoRotation_180:
*degrees = 180;
return 0;
case kVideoRotation_270:
*degrees = 270;
return 0;
}
return -1;
}
// returns the number of milliseconds until the module want a worker thread to call Process
int64_t VideoCaptureImpl::TimeUntilNextProcess()
{
CriticalSectionScoped cs(&_callBackCs);
const int64_t kProcessIntervalMs = 300;
return kProcessIntervalMs -
(TickTime::Now() - _lastProcessTime).Milliseconds();
}
// Process any pending tasks such as timeouts
int32_t VideoCaptureImpl::Process()
{
CriticalSectionScoped cs(&_callBackCs);
const TickTime now = TickTime::Now();
_lastProcessTime = TickTime::Now();
// Handle No picture alarm
if (_lastProcessFrameCount.Ticks() == _incomingFrameTimes[0].Ticks() &&
_captureAlarm != Raised)
{
if (_noPictureAlarmCallBack && _captureCallBack)
{
_captureAlarm = Raised;
_captureCallBack->OnNoPictureAlarm(_id, _captureAlarm);
}
}
else if (_lastProcessFrameCount.Ticks() != _incomingFrameTimes[0].Ticks() &&
_captureAlarm != Cleared)
{
if (_noPictureAlarmCallBack && _captureCallBack)
{
_captureAlarm = Cleared;
_captureCallBack->OnNoPictureAlarm(_id, _captureAlarm);
}
}
// Handle frame rate callback
if ((now - _lastFrameRateCallbackTime).Milliseconds()
> kFrameRateCallbackInterval)
{
if (_frameRateCallBack && _captureCallBack)
{
const uint32_t frameRate = CalculateFrameRate(now);
_captureCallBack->OnCaptureFrameRate(_id, frameRate);
}
_lastFrameRateCallbackTime = now; // Can be set by EnableFrameRateCallback
}
_lastProcessFrameCount = _incomingFrameTimes[0];
return 0;
}
VideoCaptureImpl::VideoCaptureImpl(const int32_t id)
: _id(id),
_deviceUniqueId(NULL),
_apiCs(*CriticalSectionWrapper::CreateCriticalSection()),
_captureDelay(0),
_requestedCapability(),
_callBackCs(*CriticalSectionWrapper::CreateCriticalSection()),
_lastProcessTime(TickTime::Now()),
_lastFrameRateCallbackTime(TickTime::Now()),
_frameRateCallBack(false),
_noPictureAlarmCallBack(false),
_captureAlarm(Cleared),
_setCaptureDelay(0),
_dataCallBack(NULL),
_captureCallBack(NULL),
_lastProcessFrameCount(TickTime::Now()),
_rotateFrame(kRotateNone),
apply_rotation_(true) {
_requestedCapability.width = kDefaultWidth;
_requestedCapability.height = kDefaultHeight;
_requestedCapability.maxFPS = 30;
_requestedCapability.rawType = kVideoI420;
_requestedCapability.codecType = kVideoCodecUnknown;
memset(_incomingFrameTimes, 0, sizeof(_incomingFrameTimes));
}
VideoCaptureImpl::~VideoCaptureImpl()
{
DeRegisterCaptureDataCallback();
DeRegisterCaptureCallback();
delete &_callBackCs;
delete &_apiCs;
if (_deviceUniqueId)
delete[] _deviceUniqueId;
}
void VideoCaptureImpl::RegisterCaptureDataCallback(
VideoCaptureDataCallback& dataCallBack) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_dataCallBack = &dataCallBack;
}
void VideoCaptureImpl::DeRegisterCaptureDataCallback() {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_dataCallBack = NULL;
}
void VideoCaptureImpl::RegisterCaptureCallback(VideoCaptureFeedBack& callBack) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_captureCallBack = &callBack;
}
void VideoCaptureImpl::DeRegisterCaptureCallback() {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_captureCallBack = NULL;
}
void VideoCaptureImpl::SetCaptureDelay(int32_t delayMS) {
CriticalSectionScoped cs(&_apiCs);
_captureDelay = delayMS;
}
int32_t VideoCaptureImpl::CaptureDelay()
{
CriticalSectionScoped cs(&_apiCs);
return _setCaptureDelay;
}
int32_t VideoCaptureImpl::DeliverCapturedFrame(I420VideoFrame& captureFrame) {
UpdateFrameCount(); // frame count used for local frame rate callback.
const bool callOnCaptureDelayChanged = _setCaptureDelay != _captureDelay;
// Capture delay changed
if (_setCaptureDelay != _captureDelay) {
_setCaptureDelay = _captureDelay;
}
if (_dataCallBack) {
if (callOnCaptureDelayChanged) {
_dataCallBack->OnCaptureDelayChanged(_id, _captureDelay);
}
_dataCallBack->OnIncomingCapturedFrame(_id, captureFrame);
}
return 0;
}
int32_t VideoCaptureImpl::IncomingFrame(
uint8_t* videoFrame,
size_t videoFrameLength,
const VideoCaptureCapability& frameInfo,
int64_t captureTime/*=0*/)
{
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
const int32_t width = frameInfo.width;
const int32_t height = frameInfo.height;
TRACE_EVENT1("webrtc", "VC::IncomingFrame", "capture_time", captureTime);
if (frameInfo.codecType == kVideoCodecUnknown)
{
// Not encoded, convert to I420.
const VideoType commonVideoType =
RawVideoTypeToCommonVideoVideoType(frameInfo.rawType);
if (frameInfo.rawType != kVideoMJPEG &&
CalcBufferSize(commonVideoType, width,
abs(height)) != videoFrameLength)
{
LOG(LS_ERROR) << "Wrong incoming frame length.";
return -1;
}
int stride_y = width;
int stride_uv = (width + 1) / 2;
int target_width = width;
int target_height = height;
if (apply_rotation_) {
// Rotating resolution when for 90/270 degree rotations.
if (_rotateFrame == kRotate90 || _rotateFrame == kRotate270) {
target_width = abs(height);
target_height = width;
}
}
// TODO(mikhal): Update correct aligned stride values.
//Calc16ByteAlignedStride(target_width, &stride_y, &stride_uv);
// Setting absolute height (in case it was negative).
// In Windows, the image starts bottom left, instead of top left.
// Setting a negative source height, inverts the image (within LibYuv).
int ret = _captureFrame.CreateEmptyFrame(target_width,
abs(target_height),
stride_y,
stride_uv, stride_uv);
if (ret < 0)
{
LOG(LS_ERROR) << "Failed to create empty frame, this should only "
"happen due to bad parameters.";
return -1;
}
const int conversionResult = ConvertToI420(
commonVideoType, videoFrame, 0, 0, // No cropping
width, height, videoFrameLength,
apply_rotation_ ? _rotateFrame : kRotateNone,
&_captureFrame);
if (conversionResult < 0)
{
LOG(LS_ERROR) << "Failed to convert capture frame from type "
<< frameInfo.rawType << "to I420.";
return -1;
}
if (!apply_rotation_) {
_captureFrame.set_rotation(ConvertRotation(_rotateFrame));
} else {
_captureFrame.set_rotation(kVideoRotation_0);
}
_captureFrame.set_ntp_time_ms(captureTime);
_captureFrame.set_render_time_ms(TickTime::MillisecondTimestamp());
DeliverCapturedFrame(_captureFrame);
}
else // Encoded format
{
assert(false);
return -1;
}
return 0;
}
int32_t VideoCaptureImpl::SetCaptureRotation(VideoRotation rotation) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
switch (rotation){
case kVideoRotation_0:
_rotateFrame = kRotateNone;
break;
case kVideoRotation_90:
_rotateFrame = kRotate90;
break;
case kVideoRotation_180:
_rotateFrame = kRotate180;
break;
case kVideoRotation_270:
_rotateFrame = kRotate270;
break;
default:
return -1;
}
return 0;
}
void VideoCaptureImpl::EnableFrameRateCallback(const bool enable) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_frameRateCallBack = enable;
if (enable)
{
_lastFrameRateCallbackTime = TickTime::Now();
}
}
bool VideoCaptureImpl::SetApplyRotation(bool enable) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
// The effect of this is the last caller wins.
apply_rotation_ = enable;
return true;
}
void VideoCaptureImpl::EnableNoPictureAlarm(const bool enable) {
CriticalSectionScoped cs(&_apiCs);
CriticalSectionScoped cs2(&_callBackCs);
_noPictureAlarmCallBack = enable;
}
void VideoCaptureImpl::UpdateFrameCount()
{
if (_incomingFrameTimes[0].MicrosecondTimestamp() == 0)
{
// first no shift
}
else
{
// shift
for (int i = (kFrameRateCountHistorySize - 2); i >= 0; i--)
{
_incomingFrameTimes[i + 1] = _incomingFrameTimes[i];
}
}
_incomingFrameTimes[0] = TickTime::Now();
}
uint32_t VideoCaptureImpl::CalculateFrameRate(const TickTime& now)
{
int32_t num = 0;
int32_t nrOfFrames = 0;
for (num = 1; num < (kFrameRateCountHistorySize - 1); num++)
{
if (_incomingFrameTimes[num].Ticks() <= 0
|| (now - _incomingFrameTimes[num]).Milliseconds() > kFrameRateHistoryWindowMs) // don't use data older than 2sec
{
break;
}
else
{
nrOfFrames++;
}
}
if (num > 1)
{
int64_t diff = (now - _incomingFrameTimes[num - 1]).Milliseconds();
if (diff > 0)
{
return uint32_t((nrOfFrames * 1000.0f / diff) + 0.5f);
}
}
return nrOfFrames;
}
} // namespace videocapturemodule
} // namespace webrtc