
- Pad packets (empty) were often NACKed even though they were received. - Padding only frames (empty) were didn't properly update the decoding state, and would therefore be NACKed even though they were received. This is a recommit of r3183. Extensive testing suggest that this may have been caused by virtual machine flakiness. TBR=mflodman@webrtc.org BUG=1150 Review URL: https://webrtc-codereview.appspot.com/971011 git-svn-id: http://webrtc.googlecode.com/svn/trunk@3200 4adac7df-926f-26a2-2b94-8c16560cd09d
611 lines
20 KiB
C++
611 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/main/source/session_info.h"
|
|
|
|
#include "modules/video_coding/main/source/packet.h"
|
|
|
|
namespace webrtc {
|
|
|
|
VCMSessionInfo::VCMSessionInfo()
|
|
: session_nack_(false),
|
|
complete_(false),
|
|
decodable_(false),
|
|
frame_type_(kVideoFrameDelta),
|
|
previous_frame_loss_(false),
|
|
packets_(),
|
|
empty_seq_num_low_(-1),
|
|
empty_seq_num_high_(-1),
|
|
packets_not_decodable_(0) {
|
|
}
|
|
|
|
void VCMSessionInfo::UpdateDataPointers(const uint8_t* old_base_ptr,
|
|
const uint8_t* new_base_ptr) {
|
|
for (PacketIterator it = packets_.begin(); it != packets_.end(); ++it)
|
|
if ((*it).dataPtr != NULL) {
|
|
assert(old_base_ptr != NULL && new_base_ptr != NULL);
|
|
(*it).dataPtr = new_base_ptr + ((*it).dataPtr - old_base_ptr);
|
|
}
|
|
}
|
|
|
|
int VCMSessionInfo::LowSequenceNumber() const {
|
|
if (packets_.empty())
|
|
return empty_seq_num_low_;
|
|
return packets_.front().seqNum;
|
|
}
|
|
|
|
int VCMSessionInfo::HighSequenceNumber() const {
|
|
if (packets_.empty())
|
|
return empty_seq_num_high_;
|
|
return LatestSequenceNumber(packets_.back().seqNum, empty_seq_num_high_,
|
|
NULL);
|
|
}
|
|
|
|
int VCMSessionInfo::PictureId() const {
|
|
if (packets_.empty() ||
|
|
packets_.front().codecSpecificHeader.codec != kRTPVideoVP8)
|
|
return kNoPictureId;
|
|
return packets_.front().codecSpecificHeader.codecHeader.VP8.pictureId;
|
|
}
|
|
|
|
int VCMSessionInfo::TemporalId() const {
|
|
if (packets_.empty() ||
|
|
packets_.front().codecSpecificHeader.codec != kRTPVideoVP8)
|
|
return kNoTemporalIdx;
|
|
return packets_.front().codecSpecificHeader.codecHeader.VP8.temporalIdx;
|
|
}
|
|
|
|
bool VCMSessionInfo::LayerSync() const {
|
|
if (packets_.empty() ||
|
|
packets_.front().codecSpecificHeader.codec != kRTPVideoVP8)
|
|
return false;
|
|
return packets_.front().codecSpecificHeader.codecHeader.VP8.layerSync;
|
|
}
|
|
|
|
int VCMSessionInfo::Tl0PicId() const {
|
|
if (packets_.empty() ||
|
|
packets_.front().codecSpecificHeader.codec != kRTPVideoVP8)
|
|
return kNoTl0PicIdx;
|
|
return packets_.front().codecSpecificHeader.codecHeader.VP8.tl0PicIdx;
|
|
}
|
|
|
|
bool VCMSessionInfo::NonReference() const {
|
|
if (packets_.empty() ||
|
|
packets_.front().codecSpecificHeader.codec != kRTPVideoVP8)
|
|
return false;
|
|
return packets_.front().codecSpecificHeader.codecHeader.VP8.nonReference;
|
|
}
|
|
|
|
void VCMSessionInfo::Reset() {
|
|
session_nack_ = false;
|
|
complete_ = false;
|
|
decodable_ = false;
|
|
frame_type_ = kVideoFrameDelta;
|
|
previous_frame_loss_ = false;
|
|
packets_.clear();
|
|
empty_seq_num_low_ = -1;
|
|
empty_seq_num_high_ = -1;
|
|
packets_not_decodable_ = 0;
|
|
}
|
|
|
|
int VCMSessionInfo::SessionLength() const {
|
|
int length = 0;
|
|
for (PacketIteratorConst it = packets_.begin(); it != packets_.end(); ++it)
|
|
length += (*it).sizeBytes;
|
|
return length;
|
|
}
|
|
|
|
int VCMSessionInfo::InsertBuffer(uint8_t* frame_buffer,
|
|
PacketIterator packet_it) {
|
|
VCMPacket& packet = *packet_it;
|
|
PacketIterator it;
|
|
|
|
int packet_size = packet.sizeBytes;
|
|
packet_size += (packet.insertStartCode ? kH264StartCodeLengthBytes : 0);
|
|
|
|
// Calculate the offset into the frame buffer for this packet.
|
|
int offset = 0;
|
|
for (it = packets_.begin(); it != packet_it; ++it)
|
|
offset += (*it).sizeBytes;
|
|
|
|
// Set the data pointer to pointing to the start of this packet in the
|
|
// frame buffer.
|
|
const uint8_t* data = packet.dataPtr;
|
|
packet.dataPtr = frame_buffer + offset;
|
|
packet.sizeBytes = packet_size;
|
|
|
|
ShiftSubsequentPackets(packet_it, packet_size);
|
|
|
|
const unsigned char startCode[] = {0, 0, 0, 1};
|
|
if (packet.insertStartCode) {
|
|
memcpy(const_cast<uint8_t*>(packet.dataPtr), startCode,
|
|
kH264StartCodeLengthBytes);
|
|
}
|
|
memcpy(const_cast<uint8_t*>(packet.dataPtr
|
|
+ (packet.insertStartCode ? kH264StartCodeLengthBytes : 0)),
|
|
data,
|
|
packet.sizeBytes);
|
|
|
|
return packet_size;
|
|
}
|
|
|
|
void VCMSessionInfo::ShiftSubsequentPackets(PacketIterator it,
|
|
int steps_to_shift) {
|
|
++it;
|
|
if (it == packets_.end())
|
|
return;
|
|
uint8_t* first_packet_ptr = const_cast<WebRtc_UWord8*>((*it).dataPtr);
|
|
int shift_length = 0;
|
|
// Calculate the total move length and move the data pointers in advance.
|
|
for (; it != packets_.end(); ++it) {
|
|
shift_length += (*it).sizeBytes;
|
|
if ((*it).dataPtr != NULL)
|
|
(*it).dataPtr += steps_to_shift;
|
|
}
|
|
memmove(first_packet_ptr + steps_to_shift, first_packet_ptr, shift_length);
|
|
}
|
|
|
|
void VCMSessionInfo::UpdateCompleteSession() {
|
|
if (packets_.front().isFirstPacket && packets_.back().markerBit) {
|
|
// Do we have all the packets in this session?
|
|
bool complete_session = true;
|
|
PacketIterator it = packets_.begin();
|
|
PacketIterator prev_it = it;
|
|
++it;
|
|
for (; it != packets_.end(); ++it) {
|
|
if (!InSequence(it, prev_it)) {
|
|
complete_session = false;
|
|
break;
|
|
}
|
|
prev_it = it;
|
|
}
|
|
complete_ = complete_session;
|
|
}
|
|
}
|
|
|
|
void VCMSessionInfo::UpdateDecodableSession(int rttMs) {
|
|
// Irrelevant if session is already complete or decodable
|
|
if (complete_ || decodable_)
|
|
return;
|
|
// First iteration - do nothing
|
|
}
|
|
|
|
bool VCMSessionInfo::complete() const {
|
|
return complete_;
|
|
}
|
|
|
|
bool VCMSessionInfo::decodable() const {
|
|
return decodable_;
|
|
}
|
|
|
|
// Find the end of the NAL unit which the packet pointed to by |packet_it|
|
|
// belongs to. Returns an iterator to the last packet of the frame if the end
|
|
// of the NAL unit wasn't found.
|
|
VCMSessionInfo::PacketIterator VCMSessionInfo::FindNaluEnd(
|
|
PacketIterator packet_it) const {
|
|
if ((*packet_it).completeNALU == kNaluEnd ||
|
|
(*packet_it).completeNALU == kNaluComplete) {
|
|
return packet_it;
|
|
}
|
|
// Find the end of the NAL unit.
|
|
for (; packet_it != packets_.end(); ++packet_it) {
|
|
if (((*packet_it).completeNALU == kNaluComplete &&
|
|
(*packet_it).sizeBytes > 0) ||
|
|
// Found next NALU.
|
|
(*packet_it).completeNALU == kNaluStart)
|
|
return --packet_it;
|
|
if ((*packet_it).completeNALU == kNaluEnd)
|
|
return packet_it;
|
|
}
|
|
// The end wasn't found.
|
|
return --packet_it;
|
|
}
|
|
|
|
int VCMSessionInfo::DeletePacketData(PacketIterator start,
|
|
PacketIterator end) {
|
|
int bytes_to_delete = 0; // The number of bytes to delete.
|
|
PacketIterator packet_after_end = end;
|
|
++packet_after_end;
|
|
|
|
// Get the number of bytes to delete.
|
|
// Clear the size of these packets.
|
|
for (PacketIterator it = start; it != packet_after_end; ++it) {
|
|
bytes_to_delete += (*it).sizeBytes;
|
|
(*it).sizeBytes = 0;
|
|
(*it).dataPtr = NULL;
|
|
++packets_not_decodable_;
|
|
}
|
|
if (bytes_to_delete > 0)
|
|
ShiftSubsequentPackets(end, -bytes_to_delete);
|
|
return bytes_to_delete;
|
|
}
|
|
|
|
int VCMSessionInfo::BuildVP8FragmentationHeader(
|
|
uint8_t* frame_buffer,
|
|
int frame_buffer_length,
|
|
RTPFragmentationHeader* fragmentation) {
|
|
int new_length = 0;
|
|
// Allocate space for max number of partitions
|
|
fragmentation->VerifyAndAllocateFragmentationHeader(kMaxVP8Partitions);
|
|
fragmentation->fragmentationVectorSize = 0;
|
|
memset(fragmentation->fragmentationLength, 0,
|
|
kMaxVP8Partitions * sizeof(WebRtc_UWord32));
|
|
if (packets_.empty())
|
|
return new_length;
|
|
PacketIterator it = FindNextPartitionBeginning(packets_.begin(),
|
|
&packets_not_decodable_);
|
|
while (it != packets_.end()) {
|
|
const int partition_id =
|
|
(*it).codecSpecificHeader.codecHeader.VP8.partitionId;
|
|
PacketIterator partition_end = FindPartitionEnd(it);
|
|
fragmentation->fragmentationOffset[partition_id] =
|
|
(*it).dataPtr - frame_buffer;
|
|
assert(fragmentation->fragmentationOffset[partition_id] <
|
|
static_cast<WebRtc_UWord32>(frame_buffer_length));
|
|
fragmentation->fragmentationLength[partition_id] =
|
|
(*partition_end).dataPtr + (*partition_end).sizeBytes - (*it).dataPtr;
|
|
assert(fragmentation->fragmentationLength[partition_id] <=
|
|
static_cast<WebRtc_UWord32>(frame_buffer_length));
|
|
new_length += fragmentation->fragmentationLength[partition_id];
|
|
++partition_end;
|
|
it = FindNextPartitionBeginning(partition_end, &packets_not_decodable_);
|
|
if (partition_id + 1 > fragmentation->fragmentationVectorSize)
|
|
fragmentation->fragmentationVectorSize = partition_id + 1;
|
|
}
|
|
// Set all empty fragments to start where the previous fragment ends,
|
|
// and have zero length.
|
|
if (fragmentation->fragmentationLength[0] == 0)
|
|
fragmentation->fragmentationOffset[0] = 0;
|
|
for (int i = 1; i < fragmentation->fragmentationVectorSize; ++i) {
|
|
if (fragmentation->fragmentationLength[i] == 0)
|
|
fragmentation->fragmentationOffset[i] =
|
|
fragmentation->fragmentationOffset[i - 1] +
|
|
fragmentation->fragmentationLength[i - 1];
|
|
assert(i == 0 ||
|
|
fragmentation->fragmentationOffset[i] >=
|
|
fragmentation->fragmentationOffset[i - 1]);
|
|
}
|
|
assert(new_length <= frame_buffer_length);
|
|
return new_length;
|
|
}
|
|
|
|
VCMSessionInfo::PacketIterator VCMSessionInfo::FindNextPartitionBeginning(
|
|
PacketIterator it, int* packets_skipped) const {
|
|
while (it != packets_.end()) {
|
|
if ((*it).codecSpecificHeader.codecHeader.VP8.beginningOfPartition) {
|
|
return it;
|
|
} else if (packets_skipped != NULL) {
|
|
// This packet belongs to a partition with a previous loss and can't
|
|
// be decoded.
|
|
++(*packets_skipped);
|
|
}
|
|
++it;
|
|
}
|
|
return it;
|
|
}
|
|
|
|
VCMSessionInfo::PacketIterator VCMSessionInfo::FindPartitionEnd(
|
|
PacketIterator it) const {
|
|
assert((*it).codec == kVideoCodecVP8);
|
|
PacketIterator prev_it = it;
|
|
const int partition_id =
|
|
(*it).codecSpecificHeader.codecHeader.VP8.partitionId;
|
|
while (it != packets_.end()) {
|
|
bool beginning =
|
|
(*it).codecSpecificHeader.codecHeader.VP8.beginningOfPartition;
|
|
int current_partition_id =
|
|
(*it).codecSpecificHeader.codecHeader.VP8.partitionId;
|
|
bool packet_loss_found = (!beginning && !InSequence(it, prev_it));
|
|
if (packet_loss_found ||
|
|
(beginning && current_partition_id != partition_id)) {
|
|
// Missing packet, the previous packet was the last in sequence.
|
|
return prev_it;
|
|
}
|
|
prev_it = it;
|
|
++it;
|
|
}
|
|
return prev_it;
|
|
}
|
|
|
|
bool VCMSessionInfo::InSequence(const PacketIterator& packet_it,
|
|
const PacketIterator& prev_packet_it) {
|
|
// If the two iterators are pointing to the same packet they are considered
|
|
// to be in sequence.
|
|
return (packet_it == prev_packet_it ||
|
|
(static_cast<WebRtc_UWord16>((*prev_packet_it).seqNum + 1) ==
|
|
(*packet_it).seqNum));
|
|
}
|
|
|
|
int VCMSessionInfo::MakeDecodable() {
|
|
int return_length = 0;
|
|
if (packets_.empty()) {
|
|
return 0;
|
|
}
|
|
PacketIterator it = packets_.begin();
|
|
// Make sure we remove the first NAL unit if it's not decodable.
|
|
if ((*it).completeNALU == kNaluIncomplete ||
|
|
(*it).completeNALU == kNaluEnd) {
|
|
PacketIterator nalu_end = FindNaluEnd(it);
|
|
return_length += DeletePacketData(it, nalu_end);
|
|
it = nalu_end;
|
|
}
|
|
PacketIterator prev_it = it;
|
|
// Take care of the rest of the NAL units.
|
|
for (; it != packets_.end(); ++it) {
|
|
bool start_of_nalu = ((*it).completeNALU == kNaluStart ||
|
|
(*it).completeNALU == kNaluComplete);
|
|
if (!start_of_nalu && !InSequence(it, prev_it)) {
|
|
// Found a sequence number gap due to packet loss.
|
|
PacketIterator nalu_end = FindNaluEnd(it);
|
|
return_length += DeletePacketData(it, nalu_end);
|
|
it = nalu_end;
|
|
}
|
|
prev_it = it;
|
|
}
|
|
return return_length;
|
|
}
|
|
|
|
int VCMSessionInfo::BuildHardNackList(int* seq_num_list,
|
|
int seq_num_list_length) {
|
|
if (NULL == seq_num_list || seq_num_list_length < 1) {
|
|
return -1;
|
|
}
|
|
if (packets_.empty() && empty_seq_num_low_ == -1) {
|
|
return 0;
|
|
}
|
|
|
|
// Find end point (index of entry equals the sequence number of the first
|
|
// packet).
|
|
int index = 0;
|
|
int low_seq_num = (packets_.empty()) ? empty_seq_num_low_:
|
|
packets_.front().seqNum;
|
|
for (; index < seq_num_list_length; ++index) {
|
|
if (seq_num_list[index] == low_seq_num) {
|
|
seq_num_list[index] = -1;
|
|
++index;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!packets_.empty()) {
|
|
// Zero out between the first entry and the end point.
|
|
PacketIterator it = packets_.begin();
|
|
PacketIterator prev_it = it;
|
|
++it;
|
|
while (it != packets_.end() && index < seq_num_list_length) {
|
|
if (!InSequence(it, prev_it)) {
|
|
// Found a sequence number gap due to packet loss.
|
|
index += PacketsMissing(it, prev_it);
|
|
session_nack_ = true;
|
|
}
|
|
seq_num_list[index] = -1;
|
|
++index;
|
|
prev_it = it;
|
|
++it;
|
|
}
|
|
if (!packets_.front().isFirstPacket)
|
|
session_nack_ = true;
|
|
}
|
|
index = ClearOutEmptyPacketSequenceNumbers(seq_num_list, seq_num_list_length,
|
|
index);
|
|
return 0;
|
|
}
|
|
|
|
int VCMSessionInfo::BuildSoftNackList(int* seq_num_list,
|
|
int seq_num_list_length,
|
|
int rtt_ms) {
|
|
if (NULL == seq_num_list || seq_num_list_length < 1) {
|
|
return -1;
|
|
}
|
|
if (packets_.empty() && empty_seq_num_low_ == -1) {
|
|
return 0;
|
|
}
|
|
|
|
int index = 0;
|
|
int low_seq_num = (packets_.empty()) ? empty_seq_num_low_:
|
|
packets_.front().seqNum;
|
|
// Find entrance point (index of entry equals the sequence number of the
|
|
// first packet).
|
|
for (; index < seq_num_list_length; ++index) {
|
|
if (seq_num_list[index] == low_seq_num) {
|
|
seq_num_list[index] = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TODO(mikhal): 1. Update score based on RTT value 2. Add partition data.
|
|
// Use the previous available.
|
|
bool base_available = false;
|
|
if ((index > 0) && (seq_num_list[index] == -1)) {
|
|
// Found first packet, for now let's go only one back.
|
|
if ((seq_num_list[index - 1] == -1) || (seq_num_list[index - 1] == -2)) {
|
|
// This is indeed the first packet, as previous packet was populated.
|
|
base_available = true;
|
|
}
|
|
}
|
|
bool allow_nack = ((packets_.size() > 0 && !packets_.front().isFirstPacket)
|
|
|| !base_available);
|
|
|
|
// Zero out between first entry and end point.
|
|
|
|
int media_high_seq_num;
|
|
if (HaveLastPacket()) {
|
|
media_high_seq_num = packets_.back().seqNum;
|
|
} else {
|
|
// Estimation.
|
|
if (empty_seq_num_low_ >= 0) {
|
|
// Assuming empty packets have later sequence numbers than media packets.
|
|
media_high_seq_num = empty_seq_num_low_ - 1;
|
|
} else {
|
|
// Since this frame doesn't have the marker bit we can assume it should
|
|
// contain at least one more packet.
|
|
media_high_seq_num = static_cast<uint16_t>(packets_.back().seqNum + 1);
|
|
}
|
|
}
|
|
|
|
// Compute session/packet scores and thresholds:
|
|
// based on RTT and layer info (when available).
|
|
float nack_score_threshold = 0.25f;
|
|
float layer_score = TemporalId() > 0 ? 0.0f : 1.0f;
|
|
float rtt_score = 1.0f;
|
|
float score_multiplier = rtt_score * layer_score;
|
|
// Zero out between first entry and end point.
|
|
if (!packets_.empty()) {
|
|
PacketIterator it = packets_.begin();
|
|
PacketIterator prev_it = it;
|
|
++index;
|
|
++it;
|
|
// TODO(holmer): Rewrite this in a way which better makes use of the list.
|
|
while (it != packets_.end() && index < seq_num_list_length) {
|
|
// Only process media packet sequence numbers.
|
|
if (LatestSequenceNumber((*it).seqNum, media_high_seq_num, NULL) ==
|
|
(*it).seqNum && (*it).seqNum != media_high_seq_num)
|
|
break;
|
|
if (!InSequence(it, prev_it)) {
|
|
// Found a sequence number gap due to packet loss.
|
|
int num_lost = PacketsMissing(it, prev_it);
|
|
for (int i = 0 ; i < num_lost; ++i) {
|
|
// Compute score of the packet.
|
|
float score = 1.0f;
|
|
// Multiply internal score (packet) by score multiplier.
|
|
score *= score_multiplier;
|
|
if (score > nack_score_threshold) {
|
|
allow_nack = true;
|
|
} else {
|
|
seq_num_list[index] = -1;
|
|
}
|
|
++index;
|
|
}
|
|
}
|
|
seq_num_list[index] = -1;
|
|
++index;
|
|
prev_it = it;
|
|
++it;
|
|
}
|
|
}
|
|
|
|
index = ClearOutEmptyPacketSequenceNumbers(seq_num_list, seq_num_list_length,
|
|
index);
|
|
|
|
session_nack_ = allow_nack;
|
|
return 0;
|
|
}
|
|
|
|
int VCMSessionInfo::ClearOutEmptyPacketSequenceNumbers(
|
|
int* seq_num_list,
|
|
int seq_num_list_length,
|
|
int index) const {
|
|
// Empty packets follow the data packets, and therefore have a higher
|
|
// sequence number. We do not want to NACK empty packets.
|
|
if (empty_seq_num_low_ != -1 && empty_seq_num_high_ != -1) {
|
|
// First make sure that we are at least at the minimum value (if not we are
|
|
// missing last packet(s)).
|
|
while (index < seq_num_list_length &&
|
|
seq_num_list[index] < empty_seq_num_low_) {
|
|
++index;
|
|
}
|
|
|
|
// Mark empty packets.
|
|
while (index < seq_num_list_length &&
|
|
seq_num_list[index] >= 0 &&
|
|
seq_num_list[index] <= empty_seq_num_high_) {
|
|
seq_num_list[index] = -2;
|
|
++index;
|
|
}
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int VCMSessionInfo::PacketsMissing(const PacketIterator& packet_it,
|
|
const PacketIterator& prev_packet_it) {
|
|
if (packet_it == prev_packet_it)
|
|
return 0;
|
|
if ((*prev_packet_it).seqNum > (*packet_it).seqNum) // Wrap.
|
|
return static_cast<WebRtc_UWord16>(
|
|
static_cast<WebRtc_UWord32>((*packet_it).seqNum + 0x10000) -
|
|
(*prev_packet_it).seqNum) - 1;
|
|
else
|
|
return (*packet_it).seqNum - (*prev_packet_it).seqNum - 1;
|
|
}
|
|
|
|
bool
|
|
VCMSessionInfo::HaveLastPacket() const {
|
|
return (!packets_.empty() && packets_.back().markerBit);
|
|
}
|
|
|
|
bool
|
|
VCMSessionInfo::session_nack() const {
|
|
return session_nack_;
|
|
}
|
|
|
|
int VCMSessionInfo::InsertPacket(const VCMPacket& packet,
|
|
uint8_t* frame_buffer,
|
|
bool enable_decodable_state,
|
|
int rtt_ms) {
|
|
// Check if this is first packet (only valid for some codecs)
|
|
if (packet.isFirstPacket) {
|
|
// The first packet in a frame signals the frame type.
|
|
frame_type_ = packet.frameType;
|
|
} else if (frame_type_ == kFrameEmpty && packet.frameType != kFrameEmpty) {
|
|
// Update the frame type with the first media packet.
|
|
frame_type_ = packet.frameType;
|
|
}
|
|
if (packet.frameType == kFrameEmpty) {
|
|
// Update sequence number of an empty packet.
|
|
// Only media packets are inserted into the packet list.
|
|
InformOfEmptyPacket(packet.seqNum);
|
|
return 0;
|
|
}
|
|
|
|
if (packets_.size() == kMaxPacketsInSession)
|
|
return -1;
|
|
|
|
// Find the position of this packet in the packet list in sequence number
|
|
// order and insert it. Loop over the list in reverse order.
|
|
ReversePacketIterator rit = packets_.rbegin();
|
|
for (; rit != packets_.rend(); ++rit)
|
|
if (LatestSequenceNumber((*rit).seqNum, packet.seqNum, NULL) ==
|
|
packet.seqNum)
|
|
break;
|
|
|
|
// Check for duplicate packets.
|
|
if (rit != packets_.rend() &&
|
|
(*rit).seqNum == packet.seqNum && (*rit).sizeBytes > 0)
|
|
return -2;
|
|
|
|
// The insert operation invalidates the iterator |rit|.
|
|
PacketIterator packet_list_it = packets_.insert(rit.base(), packet);
|
|
|
|
int returnLength = InsertBuffer(frame_buffer, packet_list_it);
|
|
UpdateCompleteSession();
|
|
if (enable_decodable_state)
|
|
UpdateDecodableSession(rtt_ms);
|
|
return returnLength;
|
|
}
|
|
|
|
void VCMSessionInfo::InformOfEmptyPacket(uint16_t seq_num) {
|
|
// Empty packets may be FEC or filler packets. They are sequential and
|
|
// follow the data packets, therefore, we should only keep track of the high
|
|
// and low sequence numbers and may assume that the packets in between are
|
|
// empty packets belonging to the same frame (timestamp).
|
|
empty_seq_num_high_ = LatestSequenceNumber(seq_num, empty_seq_num_high_,
|
|
NULL);
|
|
if (empty_seq_num_low_ == -1 ||
|
|
LatestSequenceNumber(seq_num, empty_seq_num_low_, NULL) ==
|
|
empty_seq_num_low_)
|
|
empty_seq_num_low_ = seq_num;
|
|
}
|
|
|
|
int VCMSessionInfo::packets_not_decodable() const {
|
|
return packets_not_decodable_;
|
|
}
|
|
|
|
} // namespace webrtc
|