The 'Module' part of the implementation must not be called via the RtpRtcp interface, but is rather a part of the contract with ProcessThread. That in turn is an implementation detail for how timers are currently implemented in the default implementation. Along the way I'm deprecating away the factory function which was inside the interface and tied it to one specific implementation. Instead, I'm moving that to the implementation itself and down the line, we don't have to go through it if we just want to create an instance of the class. The key change is in rtp_rtcp.h and the new rtp_rtcp_interface.h header file (things moved from rtp_rtcp.h), the rest falls from that. Change-Id: I294f13e947b9e3e4e649400ee94a11a81e8071ce Bug: webrtc:11581 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/176419 Reviewed-by: Magnus Flodman <mflodman@webrtc.org> Commit-Queue: Tommi <tommi@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31440}
291 lines
9.9 KiB
C++
291 lines
9.9 KiB
C++
/*
|
|
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "audio/voip/audio_egress.h"
|
|
#include "api/audio_codecs/builtin_audio_encoder_factory.h"
|
|
#include "api/call/transport.h"
|
|
#include "api/task_queue/default_task_queue_factory.h"
|
|
#include "modules/audio_mixer/sine_wave_generator.h"
|
|
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
|
|
#include "modules/rtp_rtcp/source/rtp_rtcp_impl2.h"
|
|
#include "rtc_base/event.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
#include "test/mock_transport.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
using ::testing::Invoke;
|
|
using ::testing::NiceMock;
|
|
using ::testing::Unused;
|
|
|
|
std::unique_ptr<ModuleRtpRtcpImpl2> CreateRtpStack(Clock* clock,
|
|
Transport* transport,
|
|
uint32_t remote_ssrc) {
|
|
RtpRtcpInterface::Configuration rtp_config;
|
|
rtp_config.clock = clock;
|
|
rtp_config.audio = true;
|
|
rtp_config.rtcp_report_interval_ms = 5000;
|
|
rtp_config.outgoing_transport = transport;
|
|
rtp_config.local_media_ssrc = remote_ssrc;
|
|
auto rtp_rtcp = ModuleRtpRtcpImpl2::Create(rtp_config);
|
|
rtp_rtcp->SetSendingMediaStatus(false);
|
|
rtp_rtcp->SetRTCPStatus(RtcpMode::kCompound);
|
|
return rtp_rtcp;
|
|
}
|
|
|
|
// AudioEgressTest configures audio egress by using Rtp Stack, fake clock,
|
|
// and task queue factory. Encoder factory is needed to create codec and
|
|
// configure the RTP stack in audio egress.
|
|
class AudioEgressTest : public ::testing::Test {
|
|
public:
|
|
static constexpr int16_t kAudioLevel = 3004; // Used for sine wave level.
|
|
static constexpr uint16_t kSeqNum = 12345;
|
|
static constexpr uint64_t kStartTime = 123456789;
|
|
static constexpr uint32_t kRemoteSsrc = 0xDEADBEEF;
|
|
const SdpAudioFormat kPcmuFormat = {"pcmu", 8000, 1};
|
|
|
|
AudioEgressTest()
|
|
: fake_clock_(kStartTime), wave_generator_(1000.0, kAudioLevel) {
|
|
rtp_rtcp_ = CreateRtpStack(&fake_clock_, &transport_, kRemoteSsrc);
|
|
task_queue_factory_ = CreateDefaultTaskQueueFactory();
|
|
encoder_factory_ = CreateBuiltinAudioEncoderFactory();
|
|
}
|
|
|
|
// Prepare test on audio egress by using PCMu codec with specific
|
|
// sequence number and its status to be running.
|
|
void SetUp() override {
|
|
egress_ = std::make_unique<AudioEgress>(rtp_rtcp_.get(), &fake_clock_,
|
|
task_queue_factory_.get());
|
|
constexpr int kPcmuPayload = 0;
|
|
egress_->SetEncoder(kPcmuPayload, kPcmuFormat,
|
|
encoder_factory_->MakeAudioEncoder(
|
|
kPcmuPayload, kPcmuFormat, absl::nullopt));
|
|
egress_->StartSend();
|
|
rtp_rtcp_->SetSequenceNumber(kSeqNum);
|
|
rtp_rtcp_->SetSendingStatus(true);
|
|
}
|
|
|
|
// Make sure we have shut down rtp stack and reset egress for each test.
|
|
void TearDown() override {
|
|
egress_->StopSend();
|
|
rtp_rtcp_->SetSendingStatus(false);
|
|
egress_.reset();
|
|
}
|
|
|
|
// Create an audio frame prepared for pcmu encoding. Timestamp is
|
|
// increased per RTP specification which is the number of samples it contains.
|
|
// Wave generator writes sine wave which has expected high level set
|
|
// by kAudioLevel.
|
|
std::unique_ptr<AudioFrame> GetAudioFrame(int order) {
|
|
auto frame = std::make_unique<AudioFrame>();
|
|
frame->sample_rate_hz_ = kPcmuFormat.clockrate_hz;
|
|
frame->samples_per_channel_ = kPcmuFormat.clockrate_hz / 100; // 10 ms.
|
|
frame->num_channels_ = kPcmuFormat.num_channels;
|
|
frame->timestamp_ = frame->samples_per_channel_ * order;
|
|
wave_generator_.GenerateNextFrame(frame.get());
|
|
return frame;
|
|
}
|
|
|
|
// SimulatedClock doesn't directly affect this testcase as the the
|
|
// AudioFrame's timestamp is driven by GetAudioFrame.
|
|
SimulatedClock fake_clock_;
|
|
NiceMock<MockTransport> transport_;
|
|
SineWaveGenerator wave_generator_;
|
|
std::unique_ptr<ModuleRtpRtcpImpl2> rtp_rtcp_;
|
|
std::unique_ptr<TaskQueueFactory> task_queue_factory_;
|
|
rtc::scoped_refptr<AudioEncoderFactory> encoder_factory_;
|
|
std::unique_ptr<AudioEgress> egress_;
|
|
};
|
|
|
|
TEST_F(AudioEgressTest, SendingStatusAfterStartAndStop) {
|
|
EXPECT_TRUE(egress_->IsSending());
|
|
egress_->StopSend();
|
|
EXPECT_FALSE(egress_->IsSending());
|
|
}
|
|
|
|
TEST_F(AudioEgressTest, ProcessAudioWithMute) {
|
|
constexpr int kExpected = 10;
|
|
rtc::Event event;
|
|
int rtp_count = 0;
|
|
RtpPacketReceived rtp;
|
|
auto rtp_sent = [&](const uint8_t* packet, size_t length, Unused) {
|
|
rtp.Parse(packet, length);
|
|
if (++rtp_count == kExpected) {
|
|
event.Set();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(rtp_sent));
|
|
|
|
egress_->SetMute(true);
|
|
|
|
// Two 10 ms audio frames will result in rtp packet with ptime 20.
|
|
for (size_t i = 0; i < kExpected * 2; i++) {
|
|
egress_->SendAudioData(GetAudioFrame(i));
|
|
fake_clock_.AdvanceTimeMilliseconds(10);
|
|
}
|
|
|
|
event.Wait(/*ms=*/1000);
|
|
EXPECT_EQ(rtp_count, kExpected);
|
|
|
|
// we expect on pcmu payload to result in 255 for silenced payload
|
|
RTPHeader header;
|
|
rtp.GetHeader(&header);
|
|
size_t packet_length = rtp.size();
|
|
size_t payload_length = packet_length - header.headerLength;
|
|
size_t payload_data_length = payload_length - header.paddingLength;
|
|
const uint8_t* payload = rtp.data() + header.headerLength;
|
|
for (size_t i = 0; i < payload_data_length; ++i) {
|
|
EXPECT_EQ(*payload++, 255);
|
|
}
|
|
}
|
|
|
|
TEST_F(AudioEgressTest, ProcessAudioWithSineWave) {
|
|
constexpr int kExpected = 10;
|
|
rtc::Event event;
|
|
int rtp_count = 0;
|
|
RtpPacketReceived rtp;
|
|
auto rtp_sent = [&](const uint8_t* packet, size_t length, Unused) {
|
|
rtp.Parse(packet, length);
|
|
if (++rtp_count == kExpected) {
|
|
event.Set();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(rtp_sent));
|
|
|
|
// Two 10 ms audio frames will result in rtp packet with ptime 20.
|
|
for (size_t i = 0; i < kExpected * 2; i++) {
|
|
egress_->SendAudioData(GetAudioFrame(i));
|
|
fake_clock_.AdvanceTimeMilliseconds(10);
|
|
}
|
|
|
|
event.Wait(/*ms=*/1000);
|
|
EXPECT_EQ(rtp_count, kExpected);
|
|
|
|
// we expect on pcmu to result in < 255 for payload with sine wave
|
|
RTPHeader header;
|
|
rtp.GetHeader(&header);
|
|
size_t packet_length = rtp.size();
|
|
size_t payload_length = packet_length - header.headerLength;
|
|
size_t payload_data_length = payload_length - header.paddingLength;
|
|
const uint8_t* payload = rtp.data() + header.headerLength;
|
|
for (size_t i = 0; i < payload_data_length; ++i) {
|
|
EXPECT_NE(*payload++, 255);
|
|
}
|
|
}
|
|
|
|
TEST_F(AudioEgressTest, SkipAudioEncodingAfterStopSend) {
|
|
constexpr int kExpected = 10;
|
|
rtc::Event event;
|
|
int rtp_count = 0;
|
|
auto rtp_sent = [&](const uint8_t* packet, size_t length, Unused) {
|
|
if (++rtp_count == kExpected) {
|
|
event.Set();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(rtp_sent));
|
|
|
|
// Two 10 ms audio frames will result in rtp packet with ptime 20.
|
|
for (size_t i = 0; i < kExpected * 2; i++) {
|
|
egress_->SendAudioData(GetAudioFrame(i));
|
|
fake_clock_.AdvanceTimeMilliseconds(10);
|
|
}
|
|
|
|
event.Wait(/*ms=*/1000);
|
|
EXPECT_EQ(rtp_count, kExpected);
|
|
|
|
// Now stop send and yet feed more data.
|
|
egress_->StopSend();
|
|
|
|
// It should be safe to exit the test case while encoder_queue_ has
|
|
// outstanding data to process. We are making sure that this doesn't
|
|
// result in crahses or sanitizer errors due to remaining data.
|
|
for (size_t i = 0; i < kExpected * 2; i++) {
|
|
egress_->SendAudioData(GetAudioFrame(i));
|
|
fake_clock_.AdvanceTimeMilliseconds(10);
|
|
}
|
|
}
|
|
|
|
TEST_F(AudioEgressTest, ChangeEncoderFromPcmuToOpus) {
|
|
absl::optional<SdpAudioFormat> pcmu = egress_->GetEncoderFormat();
|
|
EXPECT_TRUE(pcmu);
|
|
EXPECT_EQ(pcmu->clockrate_hz, kPcmuFormat.clockrate_hz);
|
|
EXPECT_EQ(pcmu->num_channels, kPcmuFormat.num_channels);
|
|
|
|
constexpr int kOpusPayload = 120;
|
|
const SdpAudioFormat kOpusFormat = {"opus", 48000, 2};
|
|
|
|
egress_->SetEncoder(kOpusPayload, kOpusFormat,
|
|
encoder_factory_->MakeAudioEncoder(
|
|
kOpusPayload, kOpusFormat, absl::nullopt));
|
|
|
|
absl::optional<SdpAudioFormat> opus = egress_->GetEncoderFormat();
|
|
EXPECT_TRUE(opus);
|
|
EXPECT_EQ(opus->clockrate_hz, kOpusFormat.clockrate_hz);
|
|
EXPECT_EQ(opus->num_channels, kOpusFormat.num_channels);
|
|
}
|
|
|
|
TEST_F(AudioEgressTest, SendDTMF) {
|
|
constexpr int kExpected = 7;
|
|
constexpr int kPayloadType = 100;
|
|
constexpr int kDurationMs = 100;
|
|
constexpr int kSampleRate = 8000;
|
|
constexpr int kEvent = 3;
|
|
|
|
egress_->RegisterTelephoneEventType(kPayloadType, kSampleRate);
|
|
// 100 ms duration will produce total 7 DTMF
|
|
// 1 @ 20 ms, 2 @ 40 ms, 3 @ 60 ms, 4 @ 80 ms
|
|
// 5, 6, 7 @ 100 ms (last one sends 3 dtmf)
|
|
egress_->SendTelephoneEvent(kEvent, kDurationMs);
|
|
|
|
rtc::Event event;
|
|
int dtmf_count = 0;
|
|
auto is_dtmf = [&](RtpPacketReceived& rtp) {
|
|
return (rtp.PayloadType() == kPayloadType &&
|
|
rtp.SequenceNumber() == kSeqNum + dtmf_count &&
|
|
rtp.padding_size() == 0 && rtp.Marker() == (dtmf_count == 0) &&
|
|
rtp.Ssrc() == kRemoteSsrc);
|
|
};
|
|
|
|
// It's possible that we may have actual audio RTP packets along with
|
|
// DTMF packtets. We are only interested in the exact number of DTMF
|
|
// packets rtp stack is emitting.
|
|
auto rtp_sent = [&](const uint8_t* packet, size_t length, Unused) {
|
|
RtpPacketReceived rtp;
|
|
rtp.Parse(packet, length);
|
|
if (is_dtmf(rtp) && ++dtmf_count == kExpected) {
|
|
event.Set();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(rtp_sent));
|
|
|
|
// Two 10 ms audio frames will result in rtp packet with ptime 20.
|
|
for (size_t i = 0; i < kExpected * 2; i++) {
|
|
egress_->SendAudioData(GetAudioFrame(i));
|
|
fake_clock_.AdvanceTimeMilliseconds(10);
|
|
}
|
|
|
|
event.Wait(/*ms=*/1000);
|
|
EXPECT_EQ(dtmf_count, kExpected);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace webrtc
|