
Now the ChannelBuffer has 2 separate arrays, one for the full-band data and one for the splitted one. The corresponding accessors are added to the ChannelBuffer. This is done to avoid having to refresh the bands pointers in AudioBuffer. It will also allow us to have a general accessor like data()[band][channel][sample]. All the files using the ChannelBuffer needed to be re-factored. Tested with modules_unittests, common_audio_unittests, audioproc, audioproc_f, voe_cmd_test. R=andrew@webrtc.org, kwiberg@webrtc.org Review URL: https://webrtc-codereview.appspot.com/36999004 Cr-Commit-Position: refs/heads/master@{#8318} git-svn-id: http://webrtc.googlecode.com/svn/trunk@8318 4adac7df-926f-26a2-2b94-8c16560cd09d
156 lines
5.8 KiB
C++
156 lines
5.8 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "webrtc/common_audio/audio_converter.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/channel_buffer.h"
|
|
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
|
|
|
|
namespace webrtc {
|
|
|
|
typedef scoped_ptr<ChannelBuffer<float>> ScopedBuffer;
|
|
|
|
// Sets the signal value to increase by |data| with every sample.
|
|
ScopedBuffer CreateBuffer(const std::vector<float>& data, int frames) {
|
|
const int num_channels = static_cast<int>(data.size());
|
|
ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels));
|
|
for (int i = 0; i < num_channels; ++i)
|
|
for (int j = 0; j < frames; ++j)
|
|
sb->channels()[i][j] = data[i] * j;
|
|
return sb;
|
|
}
|
|
|
|
void VerifyParams(const ChannelBuffer<float>& ref,
|
|
const ChannelBuffer<float>& test) {
|
|
EXPECT_EQ(ref.num_channels(), test.num_channels());
|
|
EXPECT_EQ(ref.num_frames(), test.num_frames());
|
|
}
|
|
|
|
// Computes the best SNR based on the error between |ref_frame| and
|
|
// |test_frame|. It searches around |expected_delay| in samples between the
|
|
// signals to compensate for the resampling delay.
|
|
float ComputeSNR(const ChannelBuffer<float>& ref,
|
|
const ChannelBuffer<float>& test,
|
|
int expected_delay) {
|
|
VerifyParams(ref, test);
|
|
float best_snr = 0;
|
|
int best_delay = 0;
|
|
|
|
// Search within one sample of the expected delay.
|
|
for (int delay = std::max(expected_delay - 1, 0);
|
|
delay <= std::min(expected_delay + 1, ref.num_frames());
|
|
++delay) {
|
|
float mse = 0;
|
|
float variance = 0;
|
|
float mean = 0;
|
|
for (int i = 0; i < ref.num_channels(); ++i) {
|
|
for (int j = 0; j < ref.num_frames() - delay; ++j) {
|
|
float error = ref.channels()[i][j] - test.channels()[i][j + delay];
|
|
mse += error * error;
|
|
variance += ref.channels()[i][j] * ref.channels()[i][j];
|
|
mean += ref.channels()[i][j];
|
|
}
|
|
}
|
|
const int length = ref.num_channels() * (ref.num_frames() - delay);
|
|
mse /= length;
|
|
variance /= length;
|
|
mean /= length;
|
|
variance -= mean * mean;
|
|
float snr = 100; // We assign 100 dB to the zero-error case.
|
|
if (mse > 0)
|
|
snr = 10 * log10(variance / mse);
|
|
if (snr > best_snr) {
|
|
best_snr = snr;
|
|
best_delay = delay;
|
|
}
|
|
}
|
|
printf("SNR=%.1f dB at delay=%d\n", best_snr, best_delay);
|
|
return best_snr;
|
|
}
|
|
|
|
// Sets the source to a linearly increasing signal for which we can easily
|
|
// generate a reference. Runs the AudioConverter and ensures the output has
|
|
// sufficiently high SNR relative to the reference.
|
|
void RunAudioConverterTest(int src_channels,
|
|
int src_sample_rate_hz,
|
|
int dst_channels,
|
|
int dst_sample_rate_hz) {
|
|
const float kSrcLeft = 0.0002f;
|
|
const float kSrcRight = 0.0001f;
|
|
const float resampling_factor = (1.f * src_sample_rate_hz) /
|
|
dst_sample_rate_hz;
|
|
const float dst_left = resampling_factor * kSrcLeft;
|
|
const float dst_right = resampling_factor * kSrcRight;
|
|
const float dst_mono = (dst_left + dst_right) / 2;
|
|
const int src_frames = src_sample_rate_hz / 100;
|
|
const int dst_frames = dst_sample_rate_hz / 100;
|
|
|
|
std::vector<float> src_data(1, kSrcLeft);
|
|
if (src_channels == 2)
|
|
src_data.push_back(kSrcRight);
|
|
ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames);
|
|
|
|
std::vector<float> dst_data(1, 0);
|
|
std::vector<float> ref_data;
|
|
if (dst_channels == 1) {
|
|
if (src_channels == 1)
|
|
ref_data.push_back(dst_left);
|
|
else
|
|
ref_data.push_back(dst_mono);
|
|
} else {
|
|
dst_data.push_back(0);
|
|
ref_data.push_back(dst_left);
|
|
if (src_channels == 1)
|
|
ref_data.push_back(dst_left);
|
|
else
|
|
ref_data.push_back(dst_right);
|
|
}
|
|
ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames);
|
|
ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames);
|
|
|
|
// The sinc resampler has a known delay, which we compute here.
|
|
const int delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 :
|
|
PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) *
|
|
dst_sample_rate_hz;
|
|
printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later.
|
|
src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);
|
|
|
|
AudioConverter converter(src_channels, src_frames, dst_channels, dst_frames);
|
|
converter.Convert(src_buffer->channels(), src_channels, src_frames,
|
|
dst_channels, dst_frames, dst_buffer->channels());
|
|
|
|
EXPECT_LT(43.f,
|
|
ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames));
|
|
}
|
|
|
|
TEST(AudioConverterTest, ConversionsPassSNRThreshold) {
|
|
const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000};
|
|
const int kSampleRatesSize = sizeof(kSampleRates) / sizeof(*kSampleRates);
|
|
const int kChannels[] = {1, 2};
|
|
const int kChannelsSize = sizeof(kChannels) / sizeof(*kChannels);
|
|
for (int src_rate = 0; src_rate < kSampleRatesSize; ++src_rate) {
|
|
for (int dst_rate = 0; dst_rate < kSampleRatesSize; ++dst_rate) {
|
|
for (int src_channel = 0; src_channel < kChannelsSize; ++src_channel) {
|
|
for (int dst_channel = 0; dst_channel < kChannelsSize; ++dst_channel) {
|
|
RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate],
|
|
kChannels[dst_channel], kSampleRates[dst_rate]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|