
This CL does two things: 1) Improves stability in the existing OpenSL ES implementation for devices that supports OpenSL ES. The cost is a slight increase in latency since the focus here has been on avoiding audio glitches. 2) Adds a new Java API to exclude usage of OpenSL ES to enable comparisons between OpenSL ES and Java based audio backends. BUG=b/22452539 Review URL: https://codereview.webrtc.org/1440623002 Cr-Commit-Position: refs/heads/master@{#10618}
468 lines
17 KiB
C++
468 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_device/android/opensles_player.h"
|
|
|
|
#include <android/log.h>
|
|
|
|
#include "webrtc/base/arraysize.h"
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/base/format_macros.h"
|
|
#include "webrtc/base/timeutils.h"
|
|
#include "webrtc/modules/audio_device/android/audio_manager.h"
|
|
#include "webrtc/modules/audio_device/fine_audio_buffer.h"
|
|
|
|
#define TAG "OpenSLESPlayer"
|
|
#define ALOGV(...) __android_log_print(ANDROID_LOG_VERBOSE, TAG, __VA_ARGS__)
|
|
#define ALOGD(...) __android_log_print(ANDROID_LOG_DEBUG, TAG, __VA_ARGS__)
|
|
#define ALOGE(...) __android_log_print(ANDROID_LOG_ERROR, TAG, __VA_ARGS__)
|
|
#define ALOGW(...) __android_log_print(ANDROID_LOG_WARN, TAG, __VA_ARGS__)
|
|
#define ALOGI(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__)
|
|
|
|
#define RETURN_ON_ERROR(op, ...) \
|
|
do { \
|
|
SLresult err = (op); \
|
|
if (err != SL_RESULT_SUCCESS) { \
|
|
ALOGE("%s failed: %d", #op, err); \
|
|
return __VA_ARGS__; \
|
|
} \
|
|
} while (0)
|
|
|
|
namespace webrtc {
|
|
|
|
OpenSLESPlayer::OpenSLESPlayer(AudioManager* audio_manager)
|
|
: audio_parameters_(audio_manager->GetPlayoutAudioParameters()),
|
|
audio_device_buffer_(NULL),
|
|
initialized_(false),
|
|
playing_(false),
|
|
bytes_per_buffer_(0),
|
|
buffer_index_(0),
|
|
engine_(nullptr),
|
|
player_(nullptr),
|
|
simple_buffer_queue_(nullptr),
|
|
volume_(nullptr),
|
|
last_play_time_(0) {
|
|
ALOGD("ctor%s", GetThreadInfo().c_str());
|
|
// Use native audio output parameters provided by the audio manager and
|
|
// define the PCM format structure.
|
|
pcm_format_ = CreatePCMConfiguration(audio_parameters_.channels(),
|
|
audio_parameters_.sample_rate(),
|
|
audio_parameters_.bits_per_sample());
|
|
// Detach from this thread since we want to use the checker to verify calls
|
|
// from the internal audio thread.
|
|
thread_checker_opensles_.DetachFromThread();
|
|
}
|
|
|
|
OpenSLESPlayer::~OpenSLESPlayer() {
|
|
ALOGD("dtor%s", GetThreadInfo().c_str());
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
Terminate();
|
|
DestroyAudioPlayer();
|
|
DestroyMix();
|
|
DestroyEngine();
|
|
RTC_DCHECK(!engine_object_.Get());
|
|
RTC_DCHECK(!engine_);
|
|
RTC_DCHECK(!output_mix_.Get());
|
|
RTC_DCHECK(!player_);
|
|
RTC_DCHECK(!simple_buffer_queue_);
|
|
RTC_DCHECK(!volume_);
|
|
}
|
|
|
|
int OpenSLESPlayer::Init() {
|
|
ALOGD("Init%s", GetThreadInfo().c_str());
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
return 0;
|
|
}
|
|
|
|
int OpenSLESPlayer::Terminate() {
|
|
ALOGD("Terminate%s", GetThreadInfo().c_str());
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
StopPlayout();
|
|
return 0;
|
|
}
|
|
|
|
int OpenSLESPlayer::InitPlayout() {
|
|
ALOGD("InitPlayout%s", GetThreadInfo().c_str());
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
RTC_DCHECK(!initialized_);
|
|
RTC_DCHECK(!playing_);
|
|
CreateEngine();
|
|
CreateMix();
|
|
initialized_ = true;
|
|
buffer_index_ = 0;
|
|
last_play_time_ = rtc::Time();
|
|
return 0;
|
|
}
|
|
|
|
int OpenSLESPlayer::StartPlayout() {
|
|
ALOGD("StartPlayout%s", GetThreadInfo().c_str());
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
RTC_DCHECK(initialized_);
|
|
RTC_DCHECK(!playing_);
|
|
// The number of lower latency audio players is limited, hence we create the
|
|
// audio player in Start() and destroy it in Stop().
|
|
CreateAudioPlayer();
|
|
// Fill up audio buffers to avoid initial glitch and to ensure that playback
|
|
// starts when mode is later changed to SL_PLAYSTATE_PLAYING.
|
|
// TODO(henrika): we can save some delay by only making one call to
|
|
// EnqueuePlayoutData. Most likely not worth the risk of adding a glitch.
|
|
for (int i = 0; i < kNumOfOpenSLESBuffers; ++i) {
|
|
EnqueuePlayoutData();
|
|
}
|
|
// Start streaming data by setting the play state to SL_PLAYSTATE_PLAYING.
|
|
// For a player object, when the object is in the SL_PLAYSTATE_PLAYING
|
|
// state, adding buffers will implicitly start playback.
|
|
RETURN_ON_ERROR((*player_)->SetPlayState(player_, SL_PLAYSTATE_PLAYING), -1);
|
|
playing_ = (GetPlayState() == SL_PLAYSTATE_PLAYING);
|
|
RTC_DCHECK(playing_);
|
|
return 0;
|
|
}
|
|
|
|
int OpenSLESPlayer::StopPlayout() {
|
|
ALOGD("StopPlayout%s", GetThreadInfo().c_str());
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
if (!initialized_ || !playing_) {
|
|
return 0;
|
|
}
|
|
// Stop playing by setting the play state to SL_PLAYSTATE_STOPPED.
|
|
RETURN_ON_ERROR((*player_)->SetPlayState(player_, SL_PLAYSTATE_STOPPED), -1);
|
|
// Clear the buffer queue to flush out any remaining data.
|
|
RETURN_ON_ERROR((*simple_buffer_queue_)->Clear(simple_buffer_queue_), -1);
|
|
#ifndef NDEBUG
|
|
// Verify that the buffer queue is in fact cleared as it should.
|
|
SLAndroidSimpleBufferQueueState buffer_queue_state;
|
|
(*simple_buffer_queue_)->GetState(simple_buffer_queue_, &buffer_queue_state);
|
|
RTC_DCHECK_EQ(0u, buffer_queue_state.count);
|
|
RTC_DCHECK_EQ(0u, buffer_queue_state.index);
|
|
#endif
|
|
// The number of lower latency audio players is limited, hence we create the
|
|
// audio player in Start() and destroy it in Stop().
|
|
DestroyAudioPlayer();
|
|
thread_checker_opensles_.DetachFromThread();
|
|
initialized_ = false;
|
|
playing_ = false;
|
|
return 0;
|
|
}
|
|
|
|
int OpenSLESPlayer::SpeakerVolumeIsAvailable(bool& available) {
|
|
available = false;
|
|
return 0;
|
|
}
|
|
|
|
int OpenSLESPlayer::MaxSpeakerVolume(uint32_t& maxVolume) const {
|
|
return -1;
|
|
}
|
|
|
|
int OpenSLESPlayer::MinSpeakerVolume(uint32_t& minVolume) const {
|
|
return -1;
|
|
}
|
|
|
|
int OpenSLESPlayer::SetSpeakerVolume(uint32_t volume) {
|
|
return -1;
|
|
}
|
|
|
|
int OpenSLESPlayer::SpeakerVolume(uint32_t& volume) const {
|
|
return -1;
|
|
}
|
|
|
|
void OpenSLESPlayer::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) {
|
|
ALOGD("AttachAudioBuffer");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
audio_device_buffer_ = audioBuffer;
|
|
const int sample_rate_hz = audio_parameters_.sample_rate();
|
|
ALOGD("SetPlayoutSampleRate(%d)", sample_rate_hz);
|
|
audio_device_buffer_->SetPlayoutSampleRate(sample_rate_hz);
|
|
const int channels = audio_parameters_.channels();
|
|
ALOGD("SetPlayoutChannels(%d)", channels);
|
|
audio_device_buffer_->SetPlayoutChannels(channels);
|
|
RTC_CHECK(audio_device_buffer_);
|
|
AllocateDataBuffers();
|
|
}
|
|
|
|
SLDataFormat_PCM OpenSLESPlayer::CreatePCMConfiguration(
|
|
int channels,
|
|
int sample_rate,
|
|
size_t bits_per_sample) {
|
|
ALOGD("CreatePCMConfiguration");
|
|
RTC_CHECK_EQ(bits_per_sample, SL_PCMSAMPLEFORMAT_FIXED_16);
|
|
SLDataFormat_PCM format;
|
|
format.formatType = SL_DATAFORMAT_PCM;
|
|
format.numChannels = static_cast<SLuint32>(channels);
|
|
// Note that, the unit of sample rate is actually in milliHertz and not Hertz.
|
|
switch (sample_rate) {
|
|
case 8000:
|
|
format.samplesPerSec = SL_SAMPLINGRATE_8;
|
|
break;
|
|
case 16000:
|
|
format.samplesPerSec = SL_SAMPLINGRATE_16;
|
|
break;
|
|
case 22050:
|
|
format.samplesPerSec = SL_SAMPLINGRATE_22_05;
|
|
break;
|
|
case 32000:
|
|
format.samplesPerSec = SL_SAMPLINGRATE_32;
|
|
break;
|
|
case 44100:
|
|
format.samplesPerSec = SL_SAMPLINGRATE_44_1;
|
|
break;
|
|
case 48000:
|
|
format.samplesPerSec = SL_SAMPLINGRATE_48;
|
|
break;
|
|
default:
|
|
RTC_CHECK(false) << "Unsupported sample rate: " << sample_rate;
|
|
}
|
|
format.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
|
|
format.containerSize = SL_PCMSAMPLEFORMAT_FIXED_16;
|
|
format.endianness = SL_BYTEORDER_LITTLEENDIAN;
|
|
if (format.numChannels == 1)
|
|
format.channelMask = SL_SPEAKER_FRONT_CENTER;
|
|
else if (format.numChannels == 2)
|
|
format.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
|
|
else
|
|
RTC_CHECK(false) << "Unsupported number of channels: "
|
|
<< format.numChannels;
|
|
return format;
|
|
}
|
|
|
|
void OpenSLESPlayer::AllocateDataBuffers() {
|
|
ALOGD("AllocateDataBuffers");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
RTC_DCHECK(!simple_buffer_queue_);
|
|
RTC_CHECK(audio_device_buffer_);
|
|
// Don't use the lowest possible size as native buffer size. Instead,
|
|
// use 10ms to better match the frame size that WebRTC uses. It will result
|
|
// in a reduced risk for audio glitches and also in a more "clean" sequence
|
|
// of callbacks from the OpenSL ES thread in to WebRTC when asking for audio
|
|
// to render.
|
|
ALOGD("lowest possible buffer size: %" PRIuS,
|
|
audio_parameters_.GetBytesPerBuffer());
|
|
bytes_per_buffer_ = audio_parameters_.GetBytesPerFrame() *
|
|
audio_parameters_.frames_per_10ms_buffer();
|
|
RTC_DCHECK_GT(bytes_per_buffer_, audio_parameters_.GetBytesPerBuffer());
|
|
ALOGD("native buffer size: %" PRIuS, bytes_per_buffer_);
|
|
// Create a modified audio buffer class which allows us to ask for any number
|
|
// of samples (and not only multiple of 10ms) to match the native OpenSL ES
|
|
// buffer size.
|
|
fine_buffer_.reset(new FineAudioBuffer(audio_device_buffer_,
|
|
bytes_per_buffer_,
|
|
audio_parameters_.sample_rate()));
|
|
// Each buffer must be of this size to avoid unnecessary memcpy while caching
|
|
// data between successive callbacks.
|
|
const size_t required_buffer_size =
|
|
fine_buffer_->RequiredPlayoutBufferSizeBytes();
|
|
ALOGD("required buffer size: %" PRIuS, required_buffer_size);
|
|
for (int i = 0; i < kNumOfOpenSLESBuffers; ++i) {
|
|
audio_buffers_[i].reset(new SLint8[required_buffer_size]);
|
|
}
|
|
}
|
|
|
|
bool OpenSLESPlayer::CreateEngine() {
|
|
ALOGD("CreateEngine");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
if (engine_object_.Get())
|
|
return true;
|
|
RTC_DCHECK(!engine_);
|
|
const SLEngineOption option[] = {
|
|
{SL_ENGINEOPTION_THREADSAFE, static_cast<SLuint32>(SL_BOOLEAN_TRUE)}};
|
|
RETURN_ON_ERROR(
|
|
slCreateEngine(engine_object_.Receive(), 1, option, 0, NULL, NULL),
|
|
false);
|
|
RETURN_ON_ERROR(
|
|
engine_object_->Realize(engine_object_.Get(), SL_BOOLEAN_FALSE), false);
|
|
RETURN_ON_ERROR(engine_object_->GetInterface(engine_object_.Get(),
|
|
SL_IID_ENGINE, &engine_),
|
|
false);
|
|
return true;
|
|
}
|
|
|
|
void OpenSLESPlayer::DestroyEngine() {
|
|
ALOGD("DestroyEngine");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
if (!engine_object_.Get())
|
|
return;
|
|
engine_ = nullptr;
|
|
engine_object_.Reset();
|
|
}
|
|
|
|
bool OpenSLESPlayer::CreateMix() {
|
|
ALOGD("CreateMix");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
RTC_DCHECK(engine_);
|
|
if (output_mix_.Get())
|
|
return true;
|
|
|
|
// Create the ouput mix on the engine object. No interfaces will be used.
|
|
RETURN_ON_ERROR((*engine_)->CreateOutputMix(engine_, output_mix_.Receive(), 0,
|
|
NULL, NULL),
|
|
false);
|
|
RETURN_ON_ERROR(output_mix_->Realize(output_mix_.Get(), SL_BOOLEAN_FALSE),
|
|
false);
|
|
return true;
|
|
}
|
|
|
|
void OpenSLESPlayer::DestroyMix() {
|
|
ALOGD("DestroyMix");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
if (!output_mix_.Get())
|
|
return;
|
|
output_mix_.Reset();
|
|
}
|
|
|
|
bool OpenSLESPlayer::CreateAudioPlayer() {
|
|
ALOGD("CreateAudioPlayer");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
RTC_DCHECK(engine_object_.Get());
|
|
RTC_DCHECK(output_mix_.Get());
|
|
if (player_object_.Get())
|
|
return true;
|
|
RTC_DCHECK(!player_);
|
|
RTC_DCHECK(!simple_buffer_queue_);
|
|
RTC_DCHECK(!volume_);
|
|
|
|
// source: Android Simple Buffer Queue Data Locator is source.
|
|
SLDataLocator_AndroidSimpleBufferQueue simple_buffer_queue = {
|
|
SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
|
|
static_cast<SLuint32>(kNumOfOpenSLESBuffers)};
|
|
SLDataSource audio_source = {&simple_buffer_queue, &pcm_format_};
|
|
|
|
// sink: OutputMix-based data is sink.
|
|
SLDataLocator_OutputMix locator_output_mix = {SL_DATALOCATOR_OUTPUTMIX,
|
|
output_mix_.Get()};
|
|
SLDataSink audio_sink = {&locator_output_mix, NULL};
|
|
|
|
// Define interfaces that we indend to use and realize.
|
|
const SLInterfaceID interface_ids[] = {
|
|
SL_IID_ANDROIDCONFIGURATION, SL_IID_BUFFERQUEUE, SL_IID_VOLUME};
|
|
const SLboolean interface_required[] = {
|
|
SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};
|
|
|
|
// Create the audio player on the engine interface.
|
|
RETURN_ON_ERROR(
|
|
(*engine_)->CreateAudioPlayer(
|
|
engine_, player_object_.Receive(), &audio_source, &audio_sink,
|
|
arraysize(interface_ids), interface_ids, interface_required),
|
|
false);
|
|
|
|
// Use the Android configuration interface to set platform-specific
|
|
// parameters. Should be done before player is realized.
|
|
SLAndroidConfigurationItf player_config;
|
|
RETURN_ON_ERROR(
|
|
player_object_->GetInterface(player_object_.Get(),
|
|
SL_IID_ANDROIDCONFIGURATION, &player_config),
|
|
false);
|
|
// Set audio player configuration to SL_ANDROID_STREAM_VOICE which
|
|
// corresponds to android.media.AudioManager.STREAM_VOICE_CALL.
|
|
SLint32 stream_type = SL_ANDROID_STREAM_VOICE;
|
|
RETURN_ON_ERROR(
|
|
(*player_config)
|
|
->SetConfiguration(player_config, SL_ANDROID_KEY_STREAM_TYPE,
|
|
&stream_type, sizeof(SLint32)),
|
|
false);
|
|
|
|
// Realize the audio player object after configuration has been set.
|
|
RETURN_ON_ERROR(
|
|
player_object_->Realize(player_object_.Get(), SL_BOOLEAN_FALSE), false);
|
|
|
|
// Get the SLPlayItf interface on the audio player.
|
|
RETURN_ON_ERROR(
|
|
player_object_->GetInterface(player_object_.Get(), SL_IID_PLAY, &player_),
|
|
false);
|
|
|
|
// Get the SLAndroidSimpleBufferQueueItf interface on the audio player.
|
|
RETURN_ON_ERROR(
|
|
player_object_->GetInterface(player_object_.Get(), SL_IID_BUFFERQUEUE,
|
|
&simple_buffer_queue_),
|
|
false);
|
|
|
|
// Register callback method for the Android Simple Buffer Queue interface.
|
|
// This method will be called when the native audio layer needs audio data.
|
|
RETURN_ON_ERROR((*simple_buffer_queue_)
|
|
->RegisterCallback(simple_buffer_queue_,
|
|
SimpleBufferQueueCallback, this),
|
|
false);
|
|
|
|
// Get the SLVolumeItf interface on the audio player.
|
|
RETURN_ON_ERROR(player_object_->GetInterface(player_object_.Get(),
|
|
SL_IID_VOLUME, &volume_),
|
|
false);
|
|
|
|
// TODO(henrika): might not be required to set volume to max here since it
|
|
// seems to be default on most devices. Might be required for unit tests.
|
|
// RETURN_ON_ERROR((*volume_)->SetVolumeLevel(volume_, 0), false);
|
|
|
|
return true;
|
|
}
|
|
|
|
void OpenSLESPlayer::DestroyAudioPlayer() {
|
|
ALOGD("DestroyAudioPlayer");
|
|
RTC_DCHECK(thread_checker_.CalledOnValidThread());
|
|
if (!player_object_.Get())
|
|
return;
|
|
player_object_.Reset();
|
|
player_ = nullptr;
|
|
simple_buffer_queue_ = nullptr;
|
|
volume_ = nullptr;
|
|
}
|
|
|
|
// static
|
|
void OpenSLESPlayer::SimpleBufferQueueCallback(
|
|
SLAndroidSimpleBufferQueueItf caller,
|
|
void* context) {
|
|
OpenSLESPlayer* stream = reinterpret_cast<OpenSLESPlayer*>(context);
|
|
stream->FillBufferQueue();
|
|
}
|
|
|
|
void OpenSLESPlayer::FillBufferQueue() {
|
|
RTC_DCHECK(thread_checker_opensles_.CalledOnValidThread());
|
|
SLuint32 state = GetPlayState();
|
|
if (state != SL_PLAYSTATE_PLAYING) {
|
|
ALOGW("Buffer callback in non-playing state!");
|
|
return;
|
|
}
|
|
EnqueuePlayoutData();
|
|
}
|
|
|
|
void OpenSLESPlayer::EnqueuePlayoutData() {
|
|
// Check delta time between two successive callbacks and provide a warning
|
|
// if it becomes very large.
|
|
// TODO(henrika): using 100ms as upper limit but this value is rather random.
|
|
const uint32_t current_time = rtc::Time();
|
|
const uint32_t diff = current_time - last_play_time_;
|
|
if (diff > 100) {
|
|
ALOGW("Bad OpenSL ES playout timing, dT=%u [ms]", diff);
|
|
}
|
|
last_play_time_ = current_time;
|
|
// Read audio data from the WebRTC source using the FineAudioBuffer object
|
|
// to adjust for differences in buffer size between WebRTC (10ms) and native
|
|
// OpenSL ES.
|
|
SLint8* audio_ptr = audio_buffers_[buffer_index_].get();
|
|
fine_buffer_->GetPlayoutData(audio_ptr);
|
|
// Enqueue the decoded audio buffer for playback.
|
|
SLresult err =
|
|
(*simple_buffer_queue_)
|
|
->Enqueue(simple_buffer_queue_, audio_ptr, bytes_per_buffer_);
|
|
if (SL_RESULT_SUCCESS != err) {
|
|
ALOGE("Enqueue failed: %d", err);
|
|
}
|
|
buffer_index_ = (buffer_index_ + 1) % kNumOfOpenSLESBuffers;
|
|
}
|
|
|
|
SLuint32 OpenSLESPlayer::GetPlayState() const {
|
|
RTC_DCHECK(player_);
|
|
SLuint32 state;
|
|
SLresult err = (*player_)->GetPlayState(player_, &state);
|
|
if (SL_RESULT_SUCCESS != err) {
|
|
ALOGE("GetPlayState failed: %d", err);
|
|
}
|
|
return state;
|
|
}
|
|
|
|
} // namespace webrtc
|