
Trying to submit all changes at once proved impossible since there were too many changes in too many files. The changes to PRESUBMIT.py will be uploaded in the last CL. (original CL: https://codereview.webrtc.org/1528503003/) BUG=webrtc:5309 TBR=mflodman@webrtc.org Review URL: https://codereview.webrtc.org/1543503002 Cr-Commit-Position: refs/heads/master@{#11102}
954 lines
35 KiB
C++
954 lines
35 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/video_coding/qm_select.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "webrtc/modules/include/module_common_types.h"
|
|
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
|
|
#include "webrtc/modules/video_coding/internal_defines.h"
|
|
#include "webrtc/modules/video_coding/qm_select_data.h"
|
|
#include "webrtc/system_wrappers/include/trace.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// QM-METHOD class
|
|
|
|
VCMQmMethod::VCMQmMethod()
|
|
: content_metrics_(NULL),
|
|
width_(0),
|
|
height_(0),
|
|
user_frame_rate_(0.0f),
|
|
native_width_(0),
|
|
native_height_(0),
|
|
native_frame_rate_(0.0f),
|
|
image_type_(kVGA),
|
|
framerate_level_(kFrameRateHigh),
|
|
init_(false) {
|
|
ResetQM();
|
|
}
|
|
|
|
VCMQmMethod::~VCMQmMethod() {}
|
|
|
|
void VCMQmMethod::ResetQM() {
|
|
aspect_ratio_ = 1.0f;
|
|
motion_.Reset();
|
|
spatial_.Reset();
|
|
content_class_ = 0;
|
|
}
|
|
|
|
uint8_t VCMQmMethod::ComputeContentClass() {
|
|
ComputeMotionNFD();
|
|
ComputeSpatial();
|
|
return content_class_ = 3 * motion_.level + spatial_.level;
|
|
}
|
|
|
|
void VCMQmMethod::UpdateContent(const VideoContentMetrics* contentMetrics) {
|
|
content_metrics_ = contentMetrics;
|
|
}
|
|
|
|
void VCMQmMethod::ComputeMotionNFD() {
|
|
if (content_metrics_) {
|
|
motion_.value = content_metrics_->motion_magnitude;
|
|
}
|
|
// Determine motion level.
|
|
if (motion_.value < kLowMotionNfd) {
|
|
motion_.level = kLow;
|
|
} else if (motion_.value > kHighMotionNfd) {
|
|
motion_.level = kHigh;
|
|
} else {
|
|
motion_.level = kDefault;
|
|
}
|
|
}
|
|
|
|
void VCMQmMethod::ComputeSpatial() {
|
|
float spatial_err = 0.0;
|
|
float spatial_err_h = 0.0;
|
|
float spatial_err_v = 0.0;
|
|
if (content_metrics_) {
|
|
spatial_err = content_metrics_->spatial_pred_err;
|
|
spatial_err_h = content_metrics_->spatial_pred_err_h;
|
|
spatial_err_v = content_metrics_->spatial_pred_err_v;
|
|
}
|
|
// Spatial measure: take average of 3 prediction errors.
|
|
spatial_.value = (spatial_err + spatial_err_h + spatial_err_v) / 3.0f;
|
|
|
|
// Reduce thresholds for large scenes/higher pixel correlation.
|
|
float scale2 = image_type_ > kVGA ? kScaleTexture : 1.0;
|
|
|
|
if (spatial_.value > scale2 * kHighTexture) {
|
|
spatial_.level = kHigh;
|
|
} else if (spatial_.value < scale2 * kLowTexture) {
|
|
spatial_.level = kLow;
|
|
} else {
|
|
spatial_.level = kDefault;
|
|
}
|
|
}
|
|
|
|
ImageType VCMQmMethod::GetImageType(uint16_t width, uint16_t height) {
|
|
// Get the image type for the encoder frame size.
|
|
uint32_t image_size = width * height;
|
|
if (image_size == kSizeOfImageType[kQCIF]) {
|
|
return kQCIF;
|
|
} else if (image_size == kSizeOfImageType[kHCIF]) {
|
|
return kHCIF;
|
|
} else if (image_size == kSizeOfImageType[kQVGA]) {
|
|
return kQVGA;
|
|
} else if (image_size == kSizeOfImageType[kCIF]) {
|
|
return kCIF;
|
|
} else if (image_size == kSizeOfImageType[kHVGA]) {
|
|
return kHVGA;
|
|
} else if (image_size == kSizeOfImageType[kVGA]) {
|
|
return kVGA;
|
|
} else if (image_size == kSizeOfImageType[kQFULLHD]) {
|
|
return kQFULLHD;
|
|
} else if (image_size == kSizeOfImageType[kWHD]) {
|
|
return kWHD;
|
|
} else if (image_size == kSizeOfImageType[kFULLHD]) {
|
|
return kFULLHD;
|
|
} else {
|
|
// No exact match, find closet one.
|
|
return FindClosestImageType(width, height);
|
|
}
|
|
}
|
|
|
|
ImageType VCMQmMethod::FindClosestImageType(uint16_t width, uint16_t height) {
|
|
float size = static_cast<float>(width * height);
|
|
float min = size;
|
|
int isel = 0;
|
|
for (int i = 0; i < kNumImageTypes; ++i) {
|
|
float dist = fabs(size - kSizeOfImageType[i]);
|
|
if (dist < min) {
|
|
min = dist;
|
|
isel = i;
|
|
}
|
|
}
|
|
return static_cast<ImageType>(isel);
|
|
}
|
|
|
|
FrameRateLevelClass VCMQmMethod::FrameRateLevel(float avg_framerate) {
|
|
if (avg_framerate <= kLowFrameRate) {
|
|
return kFrameRateLow;
|
|
} else if (avg_framerate <= kMiddleFrameRate) {
|
|
return kFrameRateMiddle1;
|
|
} else if (avg_framerate <= kHighFrameRate) {
|
|
return kFrameRateMiddle2;
|
|
} else {
|
|
return kFrameRateHigh;
|
|
}
|
|
}
|
|
|
|
// RESOLUTION CLASS
|
|
|
|
VCMQmResolution::VCMQmResolution() : qm_(new VCMResolutionScale()) {
|
|
Reset();
|
|
}
|
|
|
|
VCMQmResolution::~VCMQmResolution() {
|
|
delete qm_;
|
|
}
|
|
|
|
void VCMQmResolution::ResetRates() {
|
|
sum_target_rate_ = 0.0f;
|
|
sum_incoming_framerate_ = 0.0f;
|
|
sum_rate_MM_ = 0.0f;
|
|
sum_rate_MM_sgn_ = 0.0f;
|
|
sum_packet_loss_ = 0.0f;
|
|
buffer_level_ = kInitBufferLevel * target_bitrate_;
|
|
frame_cnt_ = 0;
|
|
frame_cnt_delta_ = 0;
|
|
low_buffer_cnt_ = 0;
|
|
update_rate_cnt_ = 0;
|
|
}
|
|
|
|
void VCMQmResolution::ResetDownSamplingState() {
|
|
state_dec_factor_spatial_ = 1.0;
|
|
state_dec_factor_temporal_ = 1.0;
|
|
for (int i = 0; i < kDownActionHistorySize; i++) {
|
|
down_action_history_[i].spatial = kNoChangeSpatial;
|
|
down_action_history_[i].temporal = kNoChangeTemporal;
|
|
}
|
|
}
|
|
|
|
void VCMQmResolution::Reset() {
|
|
target_bitrate_ = 0.0f;
|
|
incoming_framerate_ = 0.0f;
|
|
buffer_level_ = 0.0f;
|
|
per_frame_bandwidth_ = 0.0f;
|
|
avg_target_rate_ = 0.0f;
|
|
avg_incoming_framerate_ = 0.0f;
|
|
avg_ratio_buffer_low_ = 0.0f;
|
|
avg_rate_mismatch_ = 0.0f;
|
|
avg_rate_mismatch_sgn_ = 0.0f;
|
|
avg_packet_loss_ = 0.0f;
|
|
encoder_state_ = kStableEncoding;
|
|
num_layers_ = 1;
|
|
ResetRates();
|
|
ResetDownSamplingState();
|
|
ResetQM();
|
|
}
|
|
|
|
EncoderState VCMQmResolution::GetEncoderState() {
|
|
return encoder_state_;
|
|
}
|
|
|
|
// Initialize state after re-initializing the encoder,
|
|
// i.e., after SetEncodingData() in mediaOpt.
|
|
int VCMQmResolution::Initialize(float bitrate,
|
|
float user_framerate,
|
|
uint16_t width,
|
|
uint16_t height,
|
|
int num_layers) {
|
|
if (user_framerate == 0.0f || width == 0 || height == 0) {
|
|
return VCM_PARAMETER_ERROR;
|
|
}
|
|
Reset();
|
|
target_bitrate_ = bitrate;
|
|
incoming_framerate_ = user_framerate;
|
|
UpdateCodecParameters(user_framerate, width, height);
|
|
native_width_ = width;
|
|
native_height_ = height;
|
|
native_frame_rate_ = user_framerate;
|
|
num_layers_ = num_layers;
|
|
// Initial buffer level.
|
|
buffer_level_ = kInitBufferLevel * target_bitrate_;
|
|
// Per-frame bandwidth.
|
|
per_frame_bandwidth_ = target_bitrate_ / user_framerate;
|
|
init_ = true;
|
|
return VCM_OK;
|
|
}
|
|
|
|
void VCMQmResolution::UpdateCodecParameters(float frame_rate,
|
|
uint16_t width,
|
|
uint16_t height) {
|
|
width_ = width;
|
|
height_ = height;
|
|
// |user_frame_rate| is the target frame rate for VPM frame dropper.
|
|
user_frame_rate_ = frame_rate;
|
|
image_type_ = GetImageType(width, height);
|
|
}
|
|
|
|
// Update rate data after every encoded frame.
|
|
void VCMQmResolution::UpdateEncodedSize(size_t encoded_size) {
|
|
frame_cnt_++;
|
|
// Convert to Kbps.
|
|
float encoded_size_kbits = 8.0f * static_cast<float>(encoded_size) / 1000.0f;
|
|
|
|
// Update the buffer level:
|
|
// Note this is not the actual encoder buffer level.
|
|
// |buffer_level_| is reset to an initial value after SelectResolution is
|
|
// called, and does not account for frame dropping by encoder or VCM.
|
|
buffer_level_ += per_frame_bandwidth_ - encoded_size_kbits;
|
|
|
|
// Counter for occurrences of low buffer level:
|
|
// low/negative values means encoder is likely dropping frames.
|
|
if (buffer_level_ <= kPercBufferThr * kInitBufferLevel * target_bitrate_) {
|
|
low_buffer_cnt_++;
|
|
}
|
|
}
|
|
|
|
// Update various quantities after SetTargetRates in MediaOpt.
|
|
void VCMQmResolution::UpdateRates(float target_bitrate,
|
|
float encoder_sent_rate,
|
|
float incoming_framerate,
|
|
uint8_t packet_loss) {
|
|
// Sum the target bitrate: this is the encoder rate from previous update
|
|
// (~1sec), i.e, before the update for next ~1sec.
|
|
sum_target_rate_ += target_bitrate_;
|
|
update_rate_cnt_++;
|
|
|
|
// Sum the received (from RTCP reports) packet loss rates.
|
|
sum_packet_loss_ += static_cast<float>(packet_loss / 255.0);
|
|
|
|
// Sum the sequence rate mismatch:
|
|
// Mismatch here is based on the difference between the target rate
|
|
// used (in previous ~1sec) and the average actual encoding rate measured
|
|
// at previous ~1sec.
|
|
float diff = target_bitrate_ - encoder_sent_rate;
|
|
if (target_bitrate_ > 0.0)
|
|
sum_rate_MM_ += fabs(diff) / target_bitrate_;
|
|
int sgnDiff = diff > 0 ? 1 : (diff < 0 ? -1 : 0);
|
|
// To check for consistent under(+)/over_shooting(-) of target rate.
|
|
sum_rate_MM_sgn_ += sgnDiff;
|
|
|
|
// Update with the current new target and frame rate:
|
|
// these values are ones the encoder will use for the current/next ~1sec.
|
|
target_bitrate_ = target_bitrate;
|
|
incoming_framerate_ = incoming_framerate;
|
|
sum_incoming_framerate_ += incoming_framerate_;
|
|
// Update the per_frame_bandwidth:
|
|
// this is the per_frame_bw for the current/next ~1sec.
|
|
per_frame_bandwidth_ = 0.0f;
|
|
if (incoming_framerate_ > 0.0f) {
|
|
per_frame_bandwidth_ = target_bitrate_ / incoming_framerate_;
|
|
}
|
|
}
|
|
|
|
// Select the resolution factors: frame size and frame rate change (qm scales).
|
|
// Selection is for going down in resolution, or for going back up
|
|
// (if a previous down-sampling action was taken).
|
|
|
|
// In the current version the following constraints are imposed:
|
|
// 1) We only allow for one action, either down or up, at a given time.
|
|
// 2) The possible down-sampling actions are: spatial by 1/2x1/2, 3/4x3/4;
|
|
// temporal/frame rate reduction by 1/2 and 2/3.
|
|
// 3) The action for going back up is the reverse of last (spatial or temporal)
|
|
// down-sampling action. The list of down-sampling actions from the
|
|
// Initialize() state are kept in |down_action_history_|.
|
|
// 4) The total amount of down-sampling (spatial and/or temporal) from the
|
|
// Initialize() state (native resolution) is limited by various factors.
|
|
int VCMQmResolution::SelectResolution(VCMResolutionScale** qm) {
|
|
if (!init_) {
|
|
return VCM_UNINITIALIZED;
|
|
}
|
|
if (content_metrics_ == NULL) {
|
|
Reset();
|
|
*qm = qm_;
|
|
return VCM_OK;
|
|
}
|
|
|
|
// Check conditions on down-sampling state.
|
|
assert(state_dec_factor_spatial_ >= 1.0f);
|
|
assert(state_dec_factor_temporal_ >= 1.0f);
|
|
assert(state_dec_factor_spatial_ <= kMaxSpatialDown);
|
|
assert(state_dec_factor_temporal_ <= kMaxTempDown);
|
|
assert(state_dec_factor_temporal_ * state_dec_factor_spatial_ <=
|
|
kMaxTotalDown);
|
|
|
|
// Compute content class for selection.
|
|
content_class_ = ComputeContentClass();
|
|
// Compute various rate quantities for selection.
|
|
ComputeRatesForSelection();
|
|
|
|
// Get the encoder state.
|
|
ComputeEncoderState();
|
|
|
|
// Default settings: no action.
|
|
SetDefaultAction();
|
|
*qm = qm_;
|
|
|
|
// Check for going back up in resolution, if we have had some down-sampling
|
|
// relative to native state in Initialize().
|
|
if (down_action_history_[0].spatial != kNoChangeSpatial ||
|
|
down_action_history_[0].temporal != kNoChangeTemporal) {
|
|
if (GoingUpResolution()) {
|
|
*qm = qm_;
|
|
return VCM_OK;
|
|
}
|
|
}
|
|
|
|
// Check for going down in resolution.
|
|
if (GoingDownResolution()) {
|
|
*qm = qm_;
|
|
return VCM_OK;
|
|
}
|
|
return VCM_OK;
|
|
}
|
|
|
|
void VCMQmResolution::SetDefaultAction() {
|
|
qm_->codec_width = width_;
|
|
qm_->codec_height = height_;
|
|
qm_->frame_rate = user_frame_rate_;
|
|
qm_->change_resolution_spatial = false;
|
|
qm_->change_resolution_temporal = false;
|
|
qm_->spatial_width_fact = 1.0f;
|
|
qm_->spatial_height_fact = 1.0f;
|
|
qm_->temporal_fact = 1.0f;
|
|
action_.spatial = kNoChangeSpatial;
|
|
action_.temporal = kNoChangeTemporal;
|
|
}
|
|
|
|
void VCMQmResolution::ComputeRatesForSelection() {
|
|
avg_target_rate_ = 0.0f;
|
|
avg_incoming_framerate_ = 0.0f;
|
|
avg_ratio_buffer_low_ = 0.0f;
|
|
avg_rate_mismatch_ = 0.0f;
|
|
avg_rate_mismatch_sgn_ = 0.0f;
|
|
avg_packet_loss_ = 0.0f;
|
|
if (frame_cnt_ > 0) {
|
|
avg_ratio_buffer_low_ =
|
|
static_cast<float>(low_buffer_cnt_) / static_cast<float>(frame_cnt_);
|
|
}
|
|
if (update_rate_cnt_ > 0) {
|
|
avg_rate_mismatch_ =
|
|
static_cast<float>(sum_rate_MM_) / static_cast<float>(update_rate_cnt_);
|
|
avg_rate_mismatch_sgn_ = static_cast<float>(sum_rate_MM_sgn_) /
|
|
static_cast<float>(update_rate_cnt_);
|
|
avg_target_rate_ = static_cast<float>(sum_target_rate_) /
|
|
static_cast<float>(update_rate_cnt_);
|
|
avg_incoming_framerate_ = static_cast<float>(sum_incoming_framerate_) /
|
|
static_cast<float>(update_rate_cnt_);
|
|
avg_packet_loss_ = static_cast<float>(sum_packet_loss_) /
|
|
static_cast<float>(update_rate_cnt_);
|
|
}
|
|
// For selection we may want to weight some quantities more heavily
|
|
// with the current (i.e., next ~1sec) rate values.
|
|
avg_target_rate_ =
|
|
kWeightRate * avg_target_rate_ + (1.0 - kWeightRate) * target_bitrate_;
|
|
avg_incoming_framerate_ = kWeightRate * avg_incoming_framerate_ +
|
|
(1.0 - kWeightRate) * incoming_framerate_;
|
|
// Use base layer frame rate for temporal layers: this will favor spatial.
|
|
assert(num_layers_ > 0);
|
|
framerate_level_ = FrameRateLevel(avg_incoming_framerate_ /
|
|
static_cast<float>(1 << (num_layers_ - 1)));
|
|
}
|
|
|
|
void VCMQmResolution::ComputeEncoderState() {
|
|
// Default.
|
|
encoder_state_ = kStableEncoding;
|
|
|
|
// Assign stressed state if:
|
|
// 1) occurrences of low buffer levels is high, or
|
|
// 2) rate mis-match is high, and consistent over-shooting by encoder.
|
|
if ((avg_ratio_buffer_low_ > kMaxBufferLow) ||
|
|
((avg_rate_mismatch_ > kMaxRateMisMatch) &&
|
|
(avg_rate_mismatch_sgn_ < -kRateOverShoot))) {
|
|
encoder_state_ = kStressedEncoding;
|
|
}
|
|
// Assign easy state if:
|
|
// 1) rate mis-match is high, and
|
|
// 2) consistent under-shooting by encoder.
|
|
if ((avg_rate_mismatch_ > kMaxRateMisMatch) &&
|
|
(avg_rate_mismatch_sgn_ > kRateUnderShoot)) {
|
|
encoder_state_ = kEasyEncoding;
|
|
}
|
|
}
|
|
|
|
bool VCMQmResolution::GoingUpResolution() {
|
|
// For going up, we check for undoing the previous down-sampling action.
|
|
|
|
float fac_width = kFactorWidthSpatial[down_action_history_[0].spatial];
|
|
float fac_height = kFactorHeightSpatial[down_action_history_[0].spatial];
|
|
float fac_temp = kFactorTemporal[down_action_history_[0].temporal];
|
|
// For going up spatially, we allow for going up by 3/4x3/4 at each stage.
|
|
// So if the last spatial action was 1/2x1/2 it would be undone in 2 stages.
|
|
// Modify the fac_width/height for this case.
|
|
if (down_action_history_[0].spatial == kOneQuarterSpatialUniform) {
|
|
fac_width = kFactorWidthSpatial[kOneQuarterSpatialUniform] /
|
|
kFactorWidthSpatial[kOneHalfSpatialUniform];
|
|
fac_height = kFactorHeightSpatial[kOneQuarterSpatialUniform] /
|
|
kFactorHeightSpatial[kOneHalfSpatialUniform];
|
|
}
|
|
|
|
// Check if we should go up both spatially and temporally.
|
|
if (down_action_history_[0].spatial != kNoChangeSpatial &&
|
|
down_action_history_[0].temporal != kNoChangeTemporal) {
|
|
if (ConditionForGoingUp(fac_width, fac_height, fac_temp,
|
|
kTransRateScaleUpSpatialTemp)) {
|
|
action_.spatial = down_action_history_[0].spatial;
|
|
action_.temporal = down_action_history_[0].temporal;
|
|
UpdateDownsamplingState(kUpResolution);
|
|
return true;
|
|
}
|
|
}
|
|
// Check if we should go up either spatially or temporally.
|
|
bool selected_up_spatial = false;
|
|
bool selected_up_temporal = false;
|
|
if (down_action_history_[0].spatial != kNoChangeSpatial) {
|
|
selected_up_spatial = ConditionForGoingUp(fac_width, fac_height, 1.0f,
|
|
kTransRateScaleUpSpatial);
|
|
}
|
|
if (down_action_history_[0].temporal != kNoChangeTemporal) {
|
|
selected_up_temporal =
|
|
ConditionForGoingUp(1.0f, 1.0f, fac_temp, kTransRateScaleUpTemp);
|
|
}
|
|
if (selected_up_spatial && !selected_up_temporal) {
|
|
action_.spatial = down_action_history_[0].spatial;
|
|
action_.temporal = kNoChangeTemporal;
|
|
UpdateDownsamplingState(kUpResolution);
|
|
return true;
|
|
} else if (!selected_up_spatial && selected_up_temporal) {
|
|
action_.spatial = kNoChangeSpatial;
|
|
action_.temporal = down_action_history_[0].temporal;
|
|
UpdateDownsamplingState(kUpResolution);
|
|
return true;
|
|
} else if (selected_up_spatial && selected_up_temporal) {
|
|
PickSpatialOrTemporal();
|
|
UpdateDownsamplingState(kUpResolution);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VCMQmResolution::ConditionForGoingUp(float fac_width,
|
|
float fac_height,
|
|
float fac_temp,
|
|
float scale_fac) {
|
|
float estimated_transition_rate_up =
|
|
GetTransitionRate(fac_width, fac_height, fac_temp, scale_fac);
|
|
// Go back up if:
|
|
// 1) target rate is above threshold and current encoder state is stable, or
|
|
// 2) encoder state is easy (encoder is significantly under-shooting target).
|
|
if (((avg_target_rate_ > estimated_transition_rate_up) &&
|
|
(encoder_state_ == kStableEncoding)) ||
|
|
(encoder_state_ == kEasyEncoding)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool VCMQmResolution::GoingDownResolution() {
|
|
float estimated_transition_rate_down =
|
|
GetTransitionRate(1.0f, 1.0f, 1.0f, 1.0f);
|
|
float max_rate = kFrameRateFac[framerate_level_] * kMaxRateQm[image_type_];
|
|
// Resolution reduction if:
|
|
// (1) target rate is below transition rate, or
|
|
// (2) encoder is in stressed state and target rate below a max threshold.
|
|
if ((avg_target_rate_ < estimated_transition_rate_down) ||
|
|
(encoder_state_ == kStressedEncoding && avg_target_rate_ < max_rate)) {
|
|
// Get the down-sampling action: based on content class, and how low
|
|
// average target rate is relative to transition rate.
|
|
uint8_t spatial_fact =
|
|
kSpatialAction[content_class_ +
|
|
9 * RateClass(estimated_transition_rate_down)];
|
|
uint8_t temp_fact =
|
|
kTemporalAction[content_class_ +
|
|
9 * RateClass(estimated_transition_rate_down)];
|
|
|
|
switch (spatial_fact) {
|
|
case 4: {
|
|
action_.spatial = kOneQuarterSpatialUniform;
|
|
break;
|
|
}
|
|
case 2: {
|
|
action_.spatial = kOneHalfSpatialUniform;
|
|
break;
|
|
}
|
|
case 1: {
|
|
action_.spatial = kNoChangeSpatial;
|
|
break;
|
|
}
|
|
default: { assert(false); }
|
|
}
|
|
switch (temp_fact) {
|
|
case 3: {
|
|
action_.temporal = kTwoThirdsTemporal;
|
|
break;
|
|
}
|
|
case 2: {
|
|
action_.temporal = kOneHalfTemporal;
|
|
break;
|
|
}
|
|
case 1: {
|
|
action_.temporal = kNoChangeTemporal;
|
|
break;
|
|
}
|
|
default: { assert(false); }
|
|
}
|
|
// Only allow for one action (spatial or temporal) at a given time.
|
|
assert(action_.temporal == kNoChangeTemporal ||
|
|
action_.spatial == kNoChangeSpatial);
|
|
|
|
// Adjust cases not captured in tables, mainly based on frame rate, and
|
|
// also check for odd frame sizes.
|
|
AdjustAction();
|
|
|
|
// Update down-sampling state.
|
|
if (action_.spatial != kNoChangeSpatial ||
|
|
action_.temporal != kNoChangeTemporal) {
|
|
UpdateDownsamplingState(kDownResolution);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float VCMQmResolution::GetTransitionRate(float fac_width,
|
|
float fac_height,
|
|
float fac_temp,
|
|
float scale_fac) {
|
|
ImageType image_type =
|
|
GetImageType(static_cast<uint16_t>(fac_width * width_),
|
|
static_cast<uint16_t>(fac_height * height_));
|
|
|
|
FrameRateLevelClass framerate_level =
|
|
FrameRateLevel(fac_temp * avg_incoming_framerate_);
|
|
// If we are checking for going up temporally, and this is the last
|
|
// temporal action, then use native frame rate.
|
|
if (down_action_history_[1].temporal == kNoChangeTemporal &&
|
|
fac_temp > 1.0f) {
|
|
framerate_level = FrameRateLevel(native_frame_rate_);
|
|
}
|
|
|
|
// The maximum allowed rate below which down-sampling is allowed:
|
|
// Nominal values based on image format (frame size and frame rate).
|
|
float max_rate = kFrameRateFac[framerate_level] * kMaxRateQm[image_type];
|
|
|
|
uint8_t image_class = image_type > kVGA ? 1 : 0;
|
|
uint8_t table_index = image_class * 9 + content_class_;
|
|
// Scale factor for down-sampling transition threshold:
|
|
// factor based on the content class and the image size.
|
|
float scaleTransRate = kScaleTransRateQm[table_index];
|
|
// Threshold bitrate for resolution action.
|
|
return static_cast<float>(scale_fac * scaleTransRate * max_rate);
|
|
}
|
|
|
|
void VCMQmResolution::UpdateDownsamplingState(UpDownAction up_down) {
|
|
if (up_down == kUpResolution) {
|
|
qm_->spatial_width_fact = 1.0f / kFactorWidthSpatial[action_.spatial];
|
|
qm_->spatial_height_fact = 1.0f / kFactorHeightSpatial[action_.spatial];
|
|
// If last spatial action was 1/2x1/2, we undo it in two steps, so the
|
|
// spatial scale factor in this first step is modified as (4.0/3.0 / 2.0).
|
|
if (action_.spatial == kOneQuarterSpatialUniform) {
|
|
qm_->spatial_width_fact = 1.0f *
|
|
kFactorWidthSpatial[kOneHalfSpatialUniform] /
|
|
kFactorWidthSpatial[kOneQuarterSpatialUniform];
|
|
qm_->spatial_height_fact =
|
|
1.0f * kFactorHeightSpatial[kOneHalfSpatialUniform] /
|
|
kFactorHeightSpatial[kOneQuarterSpatialUniform];
|
|
}
|
|
qm_->temporal_fact = 1.0f / kFactorTemporal[action_.temporal];
|
|
RemoveLastDownAction();
|
|
} else if (up_down == kDownResolution) {
|
|
ConstrainAmountOfDownSampling();
|
|
ConvertSpatialFractionalToWhole();
|
|
qm_->spatial_width_fact = kFactorWidthSpatial[action_.spatial];
|
|
qm_->spatial_height_fact = kFactorHeightSpatial[action_.spatial];
|
|
qm_->temporal_fact = kFactorTemporal[action_.temporal];
|
|
InsertLatestDownAction();
|
|
} else {
|
|
// This function should only be called if either the Up or Down action
|
|
// has been selected.
|
|
assert(false);
|
|
}
|
|
UpdateCodecResolution();
|
|
state_dec_factor_spatial_ = state_dec_factor_spatial_ *
|
|
qm_->spatial_width_fact *
|
|
qm_->spatial_height_fact;
|
|
state_dec_factor_temporal_ = state_dec_factor_temporal_ * qm_->temporal_fact;
|
|
}
|
|
|
|
void VCMQmResolution::UpdateCodecResolution() {
|
|
if (action_.spatial != kNoChangeSpatial) {
|
|
qm_->change_resolution_spatial = true;
|
|
qm_->codec_width =
|
|
static_cast<uint16_t>(width_ / qm_->spatial_width_fact + 0.5f);
|
|
qm_->codec_height =
|
|
static_cast<uint16_t>(height_ / qm_->spatial_height_fact + 0.5f);
|
|
// Size should not exceed native sizes.
|
|
assert(qm_->codec_width <= native_width_);
|
|
assert(qm_->codec_height <= native_height_);
|
|
// New sizes should be multiple of 2, otherwise spatial should not have
|
|
// been selected.
|
|
assert(qm_->codec_width % 2 == 0);
|
|
assert(qm_->codec_height % 2 == 0);
|
|
}
|
|
if (action_.temporal != kNoChangeTemporal) {
|
|
qm_->change_resolution_temporal = true;
|
|
// Update the frame rate based on the average incoming frame rate.
|
|
qm_->frame_rate = avg_incoming_framerate_ / qm_->temporal_fact + 0.5f;
|
|
if (down_action_history_[0].temporal == 0) {
|
|
// When we undo the last temporal-down action, make sure we go back up
|
|
// to the native frame rate. Since the incoming frame rate may
|
|
// fluctuate over time, |avg_incoming_framerate_| scaled back up may
|
|
// be smaller than |native_frame rate_|.
|
|
qm_->frame_rate = native_frame_rate_;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t VCMQmResolution::RateClass(float transition_rate) {
|
|
return avg_target_rate_ < (kFacLowRate * transition_rate)
|
|
? 0
|
|
: (avg_target_rate_ >= transition_rate ? 2 : 1);
|
|
}
|
|
|
|
// TODO(marpan): Would be better to capture these frame rate adjustments by
|
|
// extending the table data (qm_select_data.h).
|
|
void VCMQmResolution::AdjustAction() {
|
|
// If the spatial level is default state (neither low or high), motion level
|
|
// is not high, and spatial action was selected, switch to 2/3 frame rate
|
|
// reduction if the average incoming frame rate is high.
|
|
if (spatial_.level == kDefault && motion_.level != kHigh &&
|
|
action_.spatial != kNoChangeSpatial &&
|
|
framerate_level_ == kFrameRateHigh) {
|
|
action_.spatial = kNoChangeSpatial;
|
|
action_.temporal = kTwoThirdsTemporal;
|
|
}
|
|
// If both motion and spatial level are low, and temporal down action was
|
|
// selected, switch to spatial 3/4x3/4 if the frame rate is not above the
|
|
// lower middle level (|kFrameRateMiddle1|).
|
|
if (motion_.level == kLow && spatial_.level == kLow &&
|
|
framerate_level_ <= kFrameRateMiddle1 &&
|
|
action_.temporal != kNoChangeTemporal) {
|
|
action_.spatial = kOneHalfSpatialUniform;
|
|
action_.temporal = kNoChangeTemporal;
|
|
}
|
|
// If spatial action is selected, and there has been too much spatial
|
|
// reduction already (i.e., 1/4), then switch to temporal action if the
|
|
// average frame rate is not low.
|
|
if (action_.spatial != kNoChangeSpatial &&
|
|
down_action_history_[0].spatial == kOneQuarterSpatialUniform &&
|
|
framerate_level_ != kFrameRateLow) {
|
|
action_.spatial = kNoChangeSpatial;
|
|
action_.temporal = kTwoThirdsTemporal;
|
|
}
|
|
// Never use temporal action if number of temporal layers is above 2.
|
|
if (num_layers_ > 2) {
|
|
if (action_.temporal != kNoChangeTemporal) {
|
|
action_.spatial = kOneHalfSpatialUniform;
|
|
}
|
|
action_.temporal = kNoChangeTemporal;
|
|
}
|
|
// If spatial action was selected, we need to make sure the frame sizes
|
|
// are multiples of two. Otherwise switch to 2/3 temporal.
|
|
if (action_.spatial != kNoChangeSpatial && !EvenFrameSize()) {
|
|
action_.spatial = kNoChangeSpatial;
|
|
// Only one action (spatial or temporal) is allowed at a given time, so need
|
|
// to check whether temporal action is currently selected.
|
|
action_.temporal = kTwoThirdsTemporal;
|
|
}
|
|
}
|
|
|
|
void VCMQmResolution::ConvertSpatialFractionalToWhole() {
|
|
// If 3/4 spatial is selected, check if there has been another 3/4,
|
|
// and if so, combine them into 1/2. 1/2 scaling is more efficient than 9/16.
|
|
// Note we define 3/4x3/4 spatial as kOneHalfSpatialUniform.
|
|
if (action_.spatial == kOneHalfSpatialUniform) {
|
|
bool found = false;
|
|
int isel = kDownActionHistorySize;
|
|
for (int i = 0; i < kDownActionHistorySize; ++i) {
|
|
if (down_action_history_[i].spatial == kOneHalfSpatialUniform) {
|
|
isel = i;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
action_.spatial = kOneQuarterSpatialUniform;
|
|
state_dec_factor_spatial_ =
|
|
state_dec_factor_spatial_ /
|
|
(kFactorWidthSpatial[kOneHalfSpatialUniform] *
|
|
kFactorHeightSpatial[kOneHalfSpatialUniform]);
|
|
// Check if switching to 1/2x1/2 (=1/4) spatial is allowed.
|
|
ConstrainAmountOfDownSampling();
|
|
if (action_.spatial == kNoChangeSpatial) {
|
|
// Not allowed. Go back to 3/4x3/4 spatial.
|
|
action_.spatial = kOneHalfSpatialUniform;
|
|
state_dec_factor_spatial_ =
|
|
state_dec_factor_spatial_ *
|
|
kFactorWidthSpatial[kOneHalfSpatialUniform] *
|
|
kFactorHeightSpatial[kOneHalfSpatialUniform];
|
|
} else {
|
|
// Switching is allowed. Remove 3/4x3/4 from the history, and update
|
|
// the frame size.
|
|
for (int i = isel; i < kDownActionHistorySize - 1; ++i) {
|
|
down_action_history_[i].spatial = down_action_history_[i + 1].spatial;
|
|
}
|
|
width_ = width_ * kFactorWidthSpatial[kOneHalfSpatialUniform];
|
|
height_ = height_ * kFactorHeightSpatial[kOneHalfSpatialUniform];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns false if the new frame sizes, under the current spatial action,
|
|
// are not multiples of two.
|
|
bool VCMQmResolution::EvenFrameSize() {
|
|
if (action_.spatial == kOneHalfSpatialUniform) {
|
|
if ((width_ * 3 / 4) % 2 != 0 || (height_ * 3 / 4) % 2 != 0) {
|
|
return false;
|
|
}
|
|
} else if (action_.spatial == kOneQuarterSpatialUniform) {
|
|
if ((width_ * 1 / 2) % 2 != 0 || (height_ * 1 / 2) % 2 != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void VCMQmResolution::InsertLatestDownAction() {
|
|
if (action_.spatial != kNoChangeSpatial) {
|
|
for (int i = kDownActionHistorySize - 1; i > 0; --i) {
|
|
down_action_history_[i].spatial = down_action_history_[i - 1].spatial;
|
|
}
|
|
down_action_history_[0].spatial = action_.spatial;
|
|
}
|
|
if (action_.temporal != kNoChangeTemporal) {
|
|
for (int i = kDownActionHistorySize - 1; i > 0; --i) {
|
|
down_action_history_[i].temporal = down_action_history_[i - 1].temporal;
|
|
}
|
|
down_action_history_[0].temporal = action_.temporal;
|
|
}
|
|
}
|
|
|
|
void VCMQmResolution::RemoveLastDownAction() {
|
|
if (action_.spatial != kNoChangeSpatial) {
|
|
// If the last spatial action was 1/2x1/2 we replace it with 3/4x3/4.
|
|
if (action_.spatial == kOneQuarterSpatialUniform) {
|
|
down_action_history_[0].spatial = kOneHalfSpatialUniform;
|
|
} else {
|
|
for (int i = 0; i < kDownActionHistorySize - 1; ++i) {
|
|
down_action_history_[i].spatial = down_action_history_[i + 1].spatial;
|
|
}
|
|
down_action_history_[kDownActionHistorySize - 1].spatial =
|
|
kNoChangeSpatial;
|
|
}
|
|
}
|
|
if (action_.temporal != kNoChangeTemporal) {
|
|
for (int i = 0; i < kDownActionHistorySize - 1; ++i) {
|
|
down_action_history_[i].temporal = down_action_history_[i + 1].temporal;
|
|
}
|
|
down_action_history_[kDownActionHistorySize - 1].temporal =
|
|
kNoChangeTemporal;
|
|
}
|
|
}
|
|
|
|
void VCMQmResolution::ConstrainAmountOfDownSampling() {
|
|
// Sanity checks on down-sampling selection:
|
|
// override the settings for too small image size and/or frame rate.
|
|
// Also check the limit on current down-sampling states.
|
|
|
|
float spatial_width_fact = kFactorWidthSpatial[action_.spatial];
|
|
float spatial_height_fact = kFactorHeightSpatial[action_.spatial];
|
|
float temporal_fact = kFactorTemporal[action_.temporal];
|
|
float new_dec_factor_spatial =
|
|
state_dec_factor_spatial_ * spatial_width_fact * spatial_height_fact;
|
|
float new_dec_factor_temp = state_dec_factor_temporal_ * temporal_fact;
|
|
|
|
// No spatial sampling if current frame size is too small, or if the
|
|
// amount of spatial down-sampling is above maximum spatial down-action.
|
|
if ((width_ * height_) <= kMinImageSize ||
|
|
new_dec_factor_spatial > kMaxSpatialDown) {
|
|
action_.spatial = kNoChangeSpatial;
|
|
new_dec_factor_spatial = state_dec_factor_spatial_;
|
|
}
|
|
// No frame rate reduction if average frame rate is below some point, or if
|
|
// the amount of temporal down-sampling is above maximum temporal down-action.
|
|
if (avg_incoming_framerate_ <= kMinFrameRate ||
|
|
new_dec_factor_temp > kMaxTempDown) {
|
|
action_.temporal = kNoChangeTemporal;
|
|
new_dec_factor_temp = state_dec_factor_temporal_;
|
|
}
|
|
// Check if the total (spatial-temporal) down-action is above maximum allowed,
|
|
// if so, disallow the current selected down-action.
|
|
if (new_dec_factor_spatial * new_dec_factor_temp > kMaxTotalDown) {
|
|
if (action_.spatial != kNoChangeSpatial) {
|
|
action_.spatial = kNoChangeSpatial;
|
|
} else if (action_.temporal != kNoChangeTemporal) {
|
|
action_.temporal = kNoChangeTemporal;
|
|
} else {
|
|
// We only allow for one action (spatial or temporal) at a given time, so
|
|
// either spatial or temporal action is selected when this function is
|
|
// called. If the selected action is disallowed from one of the above
|
|
// 2 prior conditions (on spatial & temporal max down-action), then this
|
|
// condition "total down-action > |kMaxTotalDown|" would not be entered.
|
|
assert(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VCMQmResolution::PickSpatialOrTemporal() {
|
|
// Pick the one that has had the most down-sampling thus far.
|
|
if (state_dec_factor_spatial_ > state_dec_factor_temporal_) {
|
|
action_.spatial = down_action_history_[0].spatial;
|
|
action_.temporal = kNoChangeTemporal;
|
|
} else {
|
|
action_.spatial = kNoChangeSpatial;
|
|
action_.temporal = down_action_history_[0].temporal;
|
|
}
|
|
}
|
|
|
|
// TODO(marpan): Update when we allow for directional spatial down-sampling.
|
|
void VCMQmResolution::SelectSpatialDirectionMode(float transition_rate) {
|
|
// Default is 4/3x4/3
|
|
// For bit rates well below transitional rate, we select 2x2.
|
|
if (avg_target_rate_ < transition_rate * kRateRedSpatial2X2) {
|
|
qm_->spatial_width_fact = 2.0f;
|
|
qm_->spatial_height_fact = 2.0f;
|
|
}
|
|
// Otherwise check prediction errors and aspect ratio.
|
|
float spatial_err = 0.0f;
|
|
float spatial_err_h = 0.0f;
|
|
float spatial_err_v = 0.0f;
|
|
if (content_metrics_) {
|
|
spatial_err = content_metrics_->spatial_pred_err;
|
|
spatial_err_h = content_metrics_->spatial_pred_err_h;
|
|
spatial_err_v = content_metrics_->spatial_pred_err_v;
|
|
}
|
|
|
|
// Favor 1x2 if aspect_ratio is 16:9.
|
|
if (aspect_ratio_ >= 16.0f / 9.0f) {
|
|
// Check if 1x2 has lowest prediction error.
|
|
if (spatial_err_h < spatial_err && spatial_err_h < spatial_err_v) {
|
|
qm_->spatial_width_fact = 2.0f;
|
|
qm_->spatial_height_fact = 1.0f;
|
|
}
|
|
}
|
|
// Check for 4/3x4/3 selection: favor 2x2 over 1x2 and 2x1.
|
|
if (spatial_err < spatial_err_h * (1.0f + kSpatialErr2x2VsHoriz) &&
|
|
spatial_err < spatial_err_v * (1.0f + kSpatialErr2X2VsVert)) {
|
|
qm_->spatial_width_fact = 4.0f / 3.0f;
|
|
qm_->spatial_height_fact = 4.0f / 3.0f;
|
|
}
|
|
// Check for 2x1 selection.
|
|
if (spatial_err_v < spatial_err_h * (1.0f - kSpatialErrVertVsHoriz) &&
|
|
spatial_err_v < spatial_err * (1.0f - kSpatialErr2X2VsVert)) {
|
|
qm_->spatial_width_fact = 1.0f;
|
|
qm_->spatial_height_fact = 2.0f;
|
|
}
|
|
}
|
|
|
|
// ROBUSTNESS CLASS
|
|
|
|
VCMQmRobustness::VCMQmRobustness() {
|
|
Reset();
|
|
}
|
|
|
|
VCMQmRobustness::~VCMQmRobustness() {}
|
|
|
|
void VCMQmRobustness::Reset() {
|
|
prev_total_rate_ = 0.0f;
|
|
prev_rtt_time_ = 0;
|
|
prev_packet_loss_ = 0;
|
|
prev_code_rate_delta_ = 0;
|
|
ResetQM();
|
|
}
|
|
|
|
// Adjust the FEC rate based on the content and the network state
|
|
// (packet loss rate, total rate/bandwidth, round trip time).
|
|
// Note that packetLoss here is the filtered loss value.
|
|
float VCMQmRobustness::AdjustFecFactor(uint8_t code_rate_delta,
|
|
float total_rate,
|
|
float framerate,
|
|
int64_t rtt_time,
|
|
uint8_t packet_loss) {
|
|
// Default: no adjustment
|
|
float adjust_fec = 1.0f;
|
|
if (content_metrics_ == NULL) {
|
|
return adjust_fec;
|
|
}
|
|
// Compute class state of the content.
|
|
ComputeMotionNFD();
|
|
ComputeSpatial();
|
|
|
|
// TODO(marpan): Set FEC adjustment factor.
|
|
|
|
// Keep track of previous values of network state:
|
|
// adjustment may be also based on pattern of changes in network state.
|
|
prev_total_rate_ = total_rate;
|
|
prev_rtt_time_ = rtt_time;
|
|
prev_packet_loss_ = packet_loss;
|
|
prev_code_rate_delta_ = code_rate_delta;
|
|
return adjust_fec;
|
|
}
|
|
|
|
// Set the UEP (unequal-protection across packets) on/off for the FEC.
|
|
bool VCMQmRobustness::SetUepProtection(uint8_t code_rate_delta,
|
|
float total_rate,
|
|
uint8_t packet_loss,
|
|
bool frame_type) {
|
|
// Default.
|
|
return false;
|
|
}
|
|
} // namespace webrtc
|