
This restores the conversion changes to AudioProcessing originally added in r7561, with minor alterations to ensure it passes all tests. TBR=kwiberg Review URL: https://webrtc-codereview.appspot.com/28899004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7574 4adac7df-926f-26a2-2b94-8c16560cd09d
489 lines
15 KiB
C++
489 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
template <typename T>
|
|
void StereoToMono(const T* left, const T* right, T* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i)
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
|
|
// broken when someone requests write access to either ChannelBuffer, and
|
|
// reestablished when someone requests the outdated ChannelBuffer. It is
|
|
// therefore safe to use the return value of ibuf_const() and fbuf_const()
|
|
// until the next call to ibuf() or fbuf(), and the return value of ibuf() and
|
|
// fbuf() until the next call to any of the other functions.
|
|
class IFChannelBuffer {
|
|
public:
|
|
IFChannelBuffer(int samples_per_channel, int num_channels)
|
|
: ivalid_(true),
|
|
ibuf_(samples_per_channel, num_channels),
|
|
fvalid_(true),
|
|
fbuf_(samples_per_channel, num_channels) {}
|
|
|
|
ChannelBuffer<int16_t>* ibuf() { return ibuf(false); }
|
|
ChannelBuffer<float>* fbuf() { return fbuf(false); }
|
|
const ChannelBuffer<int16_t>* ibuf_const() { return ibuf(true); }
|
|
const ChannelBuffer<float>* fbuf_const() { return fbuf(true); }
|
|
|
|
private:
|
|
ChannelBuffer<int16_t>* ibuf(bool readonly) {
|
|
RefreshI();
|
|
fvalid_ = readonly;
|
|
return &ibuf_;
|
|
}
|
|
|
|
ChannelBuffer<float>* fbuf(bool readonly) {
|
|
RefreshF();
|
|
ivalid_ = readonly;
|
|
return &fbuf_;
|
|
}
|
|
|
|
void RefreshF() {
|
|
if (!fvalid_) {
|
|
assert(ivalid_);
|
|
const int16_t* const int_data = ibuf_.data();
|
|
float* const float_data = fbuf_.data();
|
|
const int length = fbuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
float_data[i] = int_data[i];
|
|
fvalid_ = true;
|
|
}
|
|
}
|
|
|
|
void RefreshI() {
|
|
if (!ivalid_) {
|
|
assert(fvalid_);
|
|
FloatS16ToS16(fbuf_.data(), ibuf_.length(), ibuf_.data());
|
|
ivalid_ = true;
|
|
}
|
|
}
|
|
|
|
bool ivalid_;
|
|
ChannelBuffer<int16_t> ibuf_;
|
|
bool fvalid_;
|
|
ChannelBuffer<float> fbuf_;
|
|
};
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
mixed_low_pass_valid_(false),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
keyboard_data_(NULL),
|
|
channels_(new IFChannelBuffer(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
split_channels_low_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
split_channels_high_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
filter_states_.reset(new SplitFilterStates[num_proc_channels_]);
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to the S16 range.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
FloatToFloatS16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->fbuf()->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to the float range.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
FloatS16ToFloat(channels_->fbuf()->channel(i), proc_samples_per_channel_,
|
|
data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
keyboard_data_ = NULL;
|
|
mixed_low_pass_valid_ = false;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data(int channel) const {
|
|
return channels_->ibuf_const()->channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->ibuf()->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::data_f(int channel) const {
|
|
return channels_->fbuf_const()->channel(channel);
|
|
}
|
|
|
|
float* AudioBuffer::data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->fbuf()->channel(channel);
|
|
}
|
|
|
|
const float* const* AudioBuffer::channels_f() const {
|
|
return channels_->fbuf_const()->channels();
|
|
}
|
|
|
|
float* const* AudioBuffer::channels_f() {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->fbuf()->channels();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf_const()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::low_pass_split_data_f(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf_const()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
float* AudioBuffer::low_pass_split_data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
const float* const* AudioBuffer::low_pass_split_channels_f() const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf_const()->channels()
|
|
: channels_f();
|
|
}
|
|
|
|
float* const* AudioBuffer::low_pass_split_channels_f() {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf()->channels()
|
|
: channels_f();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf_const()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const float* AudioBuffer::high_pass_split_data_f(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf_const()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
float* AudioBuffer::high_pass_split_data_f(int channel) {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const float* const* AudioBuffer::high_pass_split_channels_f() const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf_const()->channels()
|
|
: NULL;
|
|
}
|
|
|
|
float* const* AudioBuffer::high_pass_split_channels_f() {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf()->channels()
|
|
: NULL;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data() {
|
|
// Currently only mixing stereo to mono is supported.
|
|
assert(num_proc_channels_ == 1 || num_proc_channels_ == 2);
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
return low_pass_split_data(0);
|
|
}
|
|
|
|
if (!mixed_low_pass_valid_) {
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_, 1));
|
|
}
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_->data(),
|
|
samples_per_split_channel_);
|
|
mixed_low_pass_valid_ = true;
|
|
}
|
|
return mixed_low_pass_channels_->data();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
SplitFilterStates* AudioBuffer::filter_states(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return &filter_states_[channel];
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(frame->num_channels_ == num_input_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
// Downmix directly; no explicit deinterleaving needed.
|
|
int16_t* downmixed = channels_->ibuf()->channel(0);
|
|
for (int i = 0; i < input_samples_per_channel_; ++i) {
|
|
downmixed[i] = (frame->data_[i * 2] + frame->data_[i * 2 + 1]) / 2;
|
|
}
|
|
} else {
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; ++j) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|