Files
platform-external-webrtc/modules/audio_processing/aec3/aec_state.cc
Per Åhgren f4801a1909 AEC3: Remove killswitches in AecState
This CL removes killswitches for code that has been properly tested in
experiments and is to be considered to be permanent.

The changes have been tested for bitexactness.

Bug: webrtc:8671
Change-Id: I0f9db16f377390d9dd3779096da91f3abc0fb4a5
Reviewed-on: https://webrtc-review.googlesource.com/102360
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24877}
2018-09-28 07:17:57 +00:00

354 lines
13 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
float ComputeGainRampupIncrease(const EchoCanceller3Config& config) {
const auto& c = config.echo_removal_control.gain_rampup;
return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks);
}
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
} // namespace
int AecState::instance_count_ = 0;
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h),
max_render_(config_.filter.main.length_blocks, 0.f),
gain_rampup_increase_(ComputeGainRampupIncrease(config_)),
suppression_gain_limiter_(config_),
filter_analyzer_(config_),
blocks_since_converged_filter_(kBlocksSinceConvergencedFilterInit),
active_blocks_since_consistent_filter_estimate_(
kBlocksSinceConsistentEstimateInit),
echo_audibility_(
config.echo_audibility.use_stationarity_properties_at_init),
reverb_model_estimator_(config) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
blocks_since_last_saturation_ = 0;
usable_linear_estimate_ = false;
capture_signal_saturation_ = false;
echo_saturation_ = false;
std::fill(max_render_.begin(), max_render_.end(), 0.f);
blocks_with_proper_filter_adaptation_ = 0;
blocks_since_reset_ = 0;
filter_has_had_time_to_converge_ = false;
render_received_ = false;
blocks_with_active_render_ = 0;
initial_state_ = true;
suppression_gain_limiter_.Reset();
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
diverged_blocks_ = 0;
if (config_.echo_removal_control.linear_and_stable_echo_path) {
converged_filter_seen_ = false;
}
erle_estimator_.Reset();
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
}
subtractor_output_analyzer_.HandleEchoPathChange();
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y) {
// Analyze the filter output.
subtractor_output_analyzer_.Update(subtractor_output);
const bool converged_filter = subtractor_output_analyzer_.ConvergedFilter();
const bool diverged_filter = subtractor_output_analyzer_.DivergedFilter();
// Analyze the filter and compute the delays.
filter_analyzer_.Update(adaptive_filter_impulse_response,
adaptive_filter_frequency_response, render_buffer);
filter_delay_blocks_ = filter_analyzer_.DelayBlocks();
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
frames_since_external_delay_change_ = 0;
external_delay_ = external_delay;
}
if (blocks_with_proper_filter_adaptation_ < 2 * kNumBlocksPerSecond &&
external_delay_) {
filter_delay_blocks_ = config_.delay.delay_headroom_blocks;
}
if (filter_analyzer_.Consistent()) {
internal_delay_ = filter_analyzer_.DelayBlocks();
} else {
internal_delay_ = absl::nullopt;
}
external_delay_seen_ = external_delay_seen_ || external_delay;
const std::vector<float>& x = render_buffer.Block(-filter_delay_blocks_)[0];
// Update counters.
++capture_block_counter_;
++blocks_since_reset_;
const bool active_render_block = DetectActiveRender(x);
blocks_with_active_render_ += active_render_block ? 1 : 0;
blocks_with_proper_filter_adaptation_ +=
active_render_block && !SaturatedCapture() ? 1 : 0;
// Update the limit on the echo suppression after an echo path change to avoid
// an initial echo burst.
suppression_gain_limiter_.Update(render_buffer.GetRenderActivity(),
transparent_mode_);
if (converged_filter) {
suppression_gain_limiter_.Deactivate();
}
if (UseStationaryProperties()) {
// Update the echo audibility evaluator.
echo_audibility_.Update(
render_buffer, FilterDelayBlocks(), external_delay_seen_,
config_.ep_strength.reverb_based_on_render ? ReverbDecay() : 0.f);
}
// Update the ERL and ERLE measures.
if (transition_triggered_) {
erle_estimator_.Reset();
}
if (blocks_since_reset_ >= 2 * kNumBlocksPerSecond) {
const auto& X2 = render_buffer.Spectrum(filter_delay_blocks_);
erle_estimator_.Update(X2, Y2, E2_main, converged_filter,
config_.erle.onset_detection);
if (converged_filter) {
erl_estimator_.Update(X2, Y2);
}
}
// Detect and flag echo saturation.
if (config_.ep_strength.echo_can_saturate) {
echo_saturation_ = DetectEchoSaturation(x, EchoPathGain());
}
if (config_.filter.conservative_initial_phase) {
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 0.8f * kNumBlocksPerSecond;
}
if (!filter_should_have_converged_) {
filter_should_have_converged_ =
blocks_with_proper_filter_adaptation_ > 6 * kNumBlocksPerSecond;
}
// Flag whether the initial state is still active.
bool prev_initial_state = initial_state_;
if (config_.filter.conservative_initial_phase) {
initial_state_ =
blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond;
} else {
initial_state_ = blocks_with_proper_filter_adaptation_ <
config_.filter.initial_state_seconds * kNumBlocksPerSecond;
}
transition_triggered_ = !initial_state_ && prev_initial_state;
// Update counters for the filter divergence and convergence.
diverged_blocks_ = diverged_filter ? diverged_blocks_ + 1 : 0;
if (diverged_blocks_ >= 60) {
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
} else {
blocks_since_converged_filter_ =
converged_filter ? 0 : blocks_since_converged_filter_ + 1;
}
if (converged_filter) {
active_blocks_since_converged_filter_ = 0;
} else if (active_render_block) {
++active_blocks_since_converged_filter_;
}
bool recently_converged_filter =
blocks_since_converged_filter_ < 60 * kNumBlocksPerSecond;
if (blocks_since_converged_filter_ > 20 * kNumBlocksPerSecond) {
converged_filter_count_ = 0;
} else if (converged_filter) {
++converged_filter_count_;
}
if (converged_filter_count_ > 50) {
finite_erl_ = true;
}
if (filter_analyzer_.Consistent() && filter_delay_blocks_ < 5) {
consistent_filter_seen_ = true;
active_blocks_since_consistent_filter_estimate_ = 0;
} else if (active_render_block) {
++active_blocks_since_consistent_filter_estimate_;
}
bool consistent_filter_estimate_not_seen;
if (!consistent_filter_seen_) {
consistent_filter_estimate_not_seen =
capture_block_counter_ > 5 * kNumBlocksPerSecond;
} else {
consistent_filter_estimate_not_seen =
active_blocks_since_consistent_filter_estimate_ >
30 * kNumBlocksPerSecond;
}
converged_filter_seen_ = converged_filter_seen_ || converged_filter;
// If no filter convergence is seen for a long time, reset the estimated
// properties of the echo path.
if (active_blocks_since_converged_filter_ > 60 * kNumBlocksPerSecond) {
converged_filter_seen_ = false;
finite_erl_ = false;
}
// After an amount of active render samples for which an echo should have been
// detected in the capture signal if the ERL was not infinite, flag that a
// transparent mode should be entered.
transparent_mode_ = !config_.ep_strength.bounded_erl && !finite_erl_;
transparent_mode_ =
transparent_mode_ &&
(consistent_filter_estimate_not_seen || !converged_filter_seen_);
transparent_mode_ = transparent_mode_ && filter_should_have_converged_;
usable_linear_estimate_ = !echo_saturation_;
if (config_.filter.conservative_initial_phase) {
usable_linear_estimate_ =
usable_linear_estimate_ && filter_has_had_time_to_converge_;
} else {
usable_linear_estimate_ =
usable_linear_estimate_ &&
((filter_has_had_time_to_converge_ && external_delay) ||
converged_filter_seen_);
}
if (config_.filter.conservative_initial_phase) {
usable_linear_estimate_ = usable_linear_estimate_ && external_delay;
}
if (!config_.echo_removal_control.linear_and_stable_echo_path) {
usable_linear_estimate_ =
usable_linear_estimate_ && recently_converged_filter;
}
usable_linear_estimate_ = usable_linear_estimate_ && !TransparentMode();
use_linear_filter_output_ = usable_linear_estimate_ && !TransparentMode();
const bool stationary_block =
config_.echo_audibility.use_stationary_properties &&
echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(
filter_analyzer_.GetAdjustedFilter(), adaptive_filter_frequency_response,
erle_estimator_.GetInstLinearQualityEstimate(), filter_delay_blocks_,
usable_linear_estimate_, stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", transparent_mode_);
data_dumper_->DumpRaw("aec3_state_internal_delay",
internal_delay_ ? *internal_delay_ : -1);
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
data_dumper_->DumpRaw("aec3_consistent_filter",
filter_analyzer_.Consistent());
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
data_dumper_->DumpRaw("aec3_initial_state", initial_state_);
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", echo_saturation_);
data_dumper_->DumpRaw("aec3_converged_filter", converged_filter);
data_dumper_->DumpRaw("aec3_diverged_filter", diverged_filter);
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_consistent_filter_estimate_not_seen",
consistent_filter_estimate_not_seen);
data_dumper_->DumpRaw("aec3_filter_should_have_converged",
filter_should_have_converged_);
data_dumper_->DumpRaw("aec3_filter_has_had_time_to_converge",
filter_has_had_time_to_converge_);
data_dumper_->DumpRaw("aec3_recently_converged_filter",
recently_converged_filter);
data_dumper_->DumpRaw("aec3_suppresion_gain_limiter_running",
IsSuppressionGainLimitActive());
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
}
bool AecState::DetectActiveRender(rtc::ArrayView<const float> x) const {
const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
return x_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
}
bool AecState::DetectEchoSaturation(rtc::ArrayView<const float> x,
float echo_path_gain) {
RTC_DCHECK_LT(0, x.size());
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
// Set flag for potential presence of saturated echo
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
if (SaturatedCapture() && peak_echo_amplitude > 32000) {
blocks_since_last_saturation_ = 0;
} else {
++blocks_since_last_saturation_;
}
return blocks_since_last_saturation_ < 5;
}
} // namespace webrtc