Files
platform-external-webrtc/webrtc/modules/rtp_rtcp/source/fec_receiver_unittest.cc
Henrik Kjellander ff761fba82 modules: more interface -> include renames
This changes the following module directories:
* webrtc/modules/audio_conference_mixer/interface
* webrtc/modules/interface
* webrtc/modules/media_file/interface
* webrtc/modules/rtp_rtcp/interface
* webrtc/modules/utility/interface

To avoid breaking downstream, I followed this recipe:
1. Copy the interface dir to a new sibling directory: include
2. Update the header guards in the include directory to match the style guide.
3. Update the header guards in the interface directory to match the ones in include. This is required to avoid getting redefinitions in the not-yet-updated downstream code.
4. Add a pragma warning in the header files in the interface dir. Example:
#pragma message("WARNING: webrtc/modules/interface is DEPRECATED; "
                "use webrtc/modules/include")
5. Search for all source references to webrtc/modules/interface and update them to webrtc/modules/include (*.c*,*.h,*.mm,*.S)
6. Update all GYP+GN files. This required manual inspection since many subdirectories of webrtc/modules referenced the interface dir using ../interface etc(*.gyp*,*.gn*)

BUG=5095
TESTED=Passing compile-trybots with --clobber flag:
git cl try --clobber --bot=win_compile_rel --bot=linux_compile_rel --bot=android_compile_rel --bot=mac_compile_rel --bot=ios_rel -m tryserver.webrtc

R=stefan@webrtc.org, tommi@webrtc.org

Review URL: https://codereview.webrtc.org/1417683006 .

Cr-Commit-Position: refs/heads/master@{#10500}
2015-11-04 07:32:04 +00:00

538 lines
20 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <list>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/modules/rtp_rtcp/include/fec_receiver.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_header_parser.h"
#include "webrtc/modules/rtp_rtcp/mocks/mock_rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"
#include "webrtc/modules/rtp_rtcp/source/fec_test_helper.h"
#include "webrtc/modules/rtp_rtcp/source/forward_error_correction.h"
using ::testing::_;
using ::testing::Args;
using ::testing::ElementsAreArray;
using ::testing::Return;
namespace webrtc {
class ReceiverFecTest : public ::testing::Test {
protected:
virtual void SetUp() {
fec_.reset(new ForwardErrorCorrection());
receiver_fec_.reset(FecReceiver::Create(&rtp_data_callback_));
generator_.reset(new FrameGenerator());
}
void GenerateFEC(std::list<Packet*>* media_packets,
std::list<Packet*>* fec_packets,
unsigned int num_fec_packets) {
uint8_t protection_factor = num_fec_packets * 255 / media_packets->size();
EXPECT_EQ(0, fec_->GenerateFEC(*media_packets, protection_factor,
0, false, kFecMaskBursty, fec_packets));
ASSERT_EQ(num_fec_packets, fec_packets->size());
}
void GenerateFrame(int num_media_packets, int frame_offset,
std::list<RtpPacket*>* media_rtp_packets,
std::list<Packet*>* media_packets) {
generator_->NewFrame(num_media_packets);
for (int i = 0; i < num_media_packets; ++i) {
media_rtp_packets->push_back(
generator_->NextPacket(frame_offset + i, kRtpHeaderSize + 10));
media_packets->push_back(media_rtp_packets->back());
}
}
void VerifyReconstructedMediaPacket(const RtpPacket* packet, int times) {
// Verify that the content of the reconstructed packet is equal to the
// content of |packet|, and that the same content is received |times| number
// of times in a row.
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, packet->length))
.With(Args<0, 1>(ElementsAreArray(packet->data,
packet->length)))
.Times(times).WillRepeatedly(Return(true));
}
void BuildAndAddRedMediaPacket(RtpPacket* packet) {
RtpPacket* red_packet = generator_->BuildMediaRedPacket(packet);
EXPECT_EQ(0, receiver_fec_->AddReceivedRedPacket(
red_packet->header.header, red_packet->data,
red_packet->length, kFecPayloadType));
delete red_packet;
}
void BuildAndAddRedFecPacket(Packet* packet) {
RtpPacket* red_packet = generator_->BuildFecRedPacket(packet);
EXPECT_EQ(0, receiver_fec_->AddReceivedRedPacket(
red_packet->header.header, red_packet->data,
red_packet->length, kFecPayloadType));
delete red_packet;
}
void InjectGarbagePacketLength(size_t fec_garbage_offset);
static void SurvivesMaliciousPacket(const uint8_t* data,
size_t length,
uint8_t ulpfec_payload_type);
MockRtpData rtp_data_callback_;
rtc::scoped_ptr<ForwardErrorCorrection> fec_;
rtc::scoped_ptr<FecReceiver> receiver_fec_;
rtc::scoped_ptr<FrameGenerator> generator_;
};
void DeletePackets(std::list<Packet*>* packets) {
while (!packets->empty()) {
delete packets->front();
packets->pop_front();
}
}
TEST_F(ReceiverFecTest, TwoMediaOneFec) {
const unsigned int kNumFecPackets = 1u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
GenerateFrame(2, 0, &media_rtp_packets, &media_packets);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets, &fec_packets, kNumFecPackets);
// Recovery
std::list<RtpPacket*>::iterator it = media_rtp_packets.begin();
BuildAndAddRedMediaPacket(*it);
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
// Drop one media packet.
std::list<Packet*>::iterator fec_it = fec_packets.begin();
BuildAndAddRedFecPacket(*fec_it);
++it;
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
FecPacketCounter counter = receiver_fec_->GetPacketCounter();
EXPECT_EQ(2U, counter.num_packets);
EXPECT_EQ(1U, counter.num_fec_packets);
EXPECT_EQ(1U, counter.num_recovered_packets);
DeletePackets(&media_packets);
}
void ReceiverFecTest::InjectGarbagePacketLength(size_t fec_garbage_offset) {
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.WillRepeatedly(Return(true));
const unsigned int kNumFecPackets = 1u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
GenerateFrame(2, 0, &media_rtp_packets, &media_packets);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets, &fec_packets, kNumFecPackets);
ByteWriter<uint16_t>::WriteBigEndian(
&fec_packets.front()->data[fec_garbage_offset], 0x4711);
// Inject first media packet, then first FEC packet, skipping the second media
// packet to cause a recovery from the FEC packet.
BuildAndAddRedMediaPacket(media_rtp_packets.front());
BuildAndAddRedFecPacket(fec_packets.front());
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
FecPacketCounter counter = receiver_fec_->GetPacketCounter();
EXPECT_EQ(2u, counter.num_packets);
EXPECT_EQ(1u, counter.num_fec_packets);
EXPECT_EQ(0u, counter.num_recovered_packets);
DeletePackets(&media_packets);
}
TEST_F(ReceiverFecTest, InjectGarbageFecHeaderLengthRecovery) {
// Byte offset 8 is the 'length recovery' field of the FEC header.
InjectGarbagePacketLength(8);
}
TEST_F(ReceiverFecTest, InjectGarbageFecLevelHeaderProtectionLength) {
// Byte offset 10 is the 'protection length' field in the first FEC level
// header.
InjectGarbagePacketLength(10);
}
TEST_F(ReceiverFecTest, TwoMediaTwoFec) {
const unsigned int kNumFecPackets = 2u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
GenerateFrame(2, 0, &media_rtp_packets, &media_packets);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets, &fec_packets, kNumFecPackets);
// Recovery
// Drop both media packets.
std::list<RtpPacket*>::iterator it = media_rtp_packets.begin();
std::list<Packet*>::iterator fec_it = fec_packets.begin();
BuildAndAddRedFecPacket(*fec_it);
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
++fec_it;
BuildAndAddRedFecPacket(*fec_it);
++it;
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets);
}
TEST_F(ReceiverFecTest, TwoFramesOneFec) {
const unsigned int kNumFecPackets = 1u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
GenerateFrame(1, 0, &media_rtp_packets, &media_packets);
GenerateFrame(1, 1, &media_rtp_packets, &media_packets);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets, &fec_packets, kNumFecPackets);
// Recovery
std::list<RtpPacket*>::iterator it = media_rtp_packets.begin();
BuildAndAddRedMediaPacket(media_rtp_packets.front());
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
// Drop one media packet.
BuildAndAddRedFecPacket(fec_packets.front());
++it;
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets);
}
TEST_F(ReceiverFecTest, OneCompleteOneUnrecoverableFrame) {
const unsigned int kNumFecPackets = 1u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
GenerateFrame(1, 0, &media_rtp_packets, &media_packets);
GenerateFrame(2, 1, &media_rtp_packets, &media_packets);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets, &fec_packets, kNumFecPackets);
// Recovery
std::list<RtpPacket*>::iterator it = media_rtp_packets.begin();
BuildAndAddRedMediaPacket(*it); // First frame: one packet.
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
++it;
BuildAndAddRedMediaPacket(*it); // First packet of second frame.
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets);
}
TEST_F(ReceiverFecTest, MaxFramesOneFec) {
const unsigned int kNumFecPackets = 1u;
const unsigned int kNumMediaPackets = 48u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
for (unsigned int i = 0; i < kNumMediaPackets; ++i) {
GenerateFrame(1, i, &media_rtp_packets, &media_packets);
}
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets, &fec_packets, kNumFecPackets);
// Recovery
std::list<RtpPacket*>::iterator it = media_rtp_packets.begin();
++it; // Drop first packet.
for (; it != media_rtp_packets.end(); ++it) {
BuildAndAddRedMediaPacket(*it);
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
}
BuildAndAddRedFecPacket(fec_packets.front());
it = media_rtp_packets.begin();
VerifyReconstructedMediaPacket(*it, 1);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets);
}
TEST_F(ReceiverFecTest, TooManyFrames) {
const unsigned int kNumFecPackets = 1u;
const unsigned int kNumMediaPackets = 49u;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
for (unsigned int i = 0; i < kNumMediaPackets; ++i) {
GenerateFrame(1, i, &media_rtp_packets, &media_packets);
}
std::list<Packet*> fec_packets;
EXPECT_EQ(-1, fec_->GenerateFEC(media_packets,
kNumFecPackets * 255 / kNumMediaPackets, 0,
false, kFecMaskBursty, &fec_packets));
DeletePackets(&media_packets);
}
TEST_F(ReceiverFecTest, PacketNotDroppedTooEarly) {
// 1 frame with 2 media packets and one FEC packet. One media packet missing.
// Delay the FEC packet.
Packet* delayed_fec = NULL;
const unsigned int kNumFecPacketsBatch1 = 1u;
const unsigned int kNumMediaPacketsBatch1 = 2u;
std::list<RtpPacket*> media_rtp_packets_batch1;
std::list<Packet*> media_packets_batch1;
GenerateFrame(kNumMediaPacketsBatch1, 0, &media_rtp_packets_batch1,
&media_packets_batch1);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets_batch1, &fec_packets, kNumFecPacketsBatch1);
BuildAndAddRedMediaPacket(media_rtp_packets_batch1.front());
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(1).WillRepeatedly(Return(true));
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
delayed_fec = fec_packets.front();
// Fill the FEC decoder. No packets should be dropped.
const unsigned int kNumMediaPacketsBatch2 = 46u;
std::list<RtpPacket*> media_rtp_packets_batch2;
std::list<Packet*> media_packets_batch2;
for (unsigned int i = 0; i < kNumMediaPacketsBatch2; ++i) {
GenerateFrame(1, i, &media_rtp_packets_batch2, &media_packets_batch2);
}
for (std::list<RtpPacket*>::iterator it = media_rtp_packets_batch2.begin();
it != media_rtp_packets_batch2.end(); ++it) {
BuildAndAddRedMediaPacket(*it);
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(1).WillRepeatedly(Return(true));
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
}
// Add the delayed FEC packet. One packet should be reconstructed.
BuildAndAddRedFecPacket(delayed_fec);
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(1).WillRepeatedly(Return(true));
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets_batch1);
DeletePackets(&media_packets_batch2);
}
TEST_F(ReceiverFecTest, PacketDroppedWhenTooOld) {
// 1 frame with 2 media packets and one FEC packet. One media packet missing.
// Delay the FEC packet.
Packet* delayed_fec = NULL;
const unsigned int kNumFecPacketsBatch1 = 1u;
const unsigned int kNumMediaPacketsBatch1 = 2u;
std::list<RtpPacket*> media_rtp_packets_batch1;
std::list<Packet*> media_packets_batch1;
GenerateFrame(kNumMediaPacketsBatch1, 0, &media_rtp_packets_batch1,
&media_packets_batch1);
std::list<Packet*> fec_packets;
GenerateFEC(&media_packets_batch1, &fec_packets, kNumFecPacketsBatch1);
BuildAndAddRedMediaPacket(media_rtp_packets_batch1.front());
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(1).WillRepeatedly(Return(true));
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
delayed_fec = fec_packets.front();
// Fill the FEC decoder and force the last packet to be dropped.
const unsigned int kNumMediaPacketsBatch2 = 48u;
std::list<RtpPacket*> media_rtp_packets_batch2;
std::list<Packet*> media_packets_batch2;
for (unsigned int i = 0; i < kNumMediaPacketsBatch2; ++i) {
GenerateFrame(1, i, &media_rtp_packets_batch2, &media_packets_batch2);
}
for (std::list<RtpPacket*>::iterator it = media_rtp_packets_batch2.begin();
it != media_rtp_packets_batch2.end(); ++it) {
BuildAndAddRedMediaPacket(*it);
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(1).WillRepeatedly(Return(true));
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
}
// Add the delayed FEC packet. No packet should be reconstructed since the
// first media packet of that frame has been dropped due to being too old.
BuildAndAddRedFecPacket(delayed_fec);
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(0);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets_batch1);
DeletePackets(&media_packets_batch2);
}
TEST_F(ReceiverFecTest, OldFecPacketDropped) {
// 49 frames with 2 media packets and one FEC packet. All media packets
// missing.
const unsigned int kNumMediaPackets = 49 * 2;
std::list<RtpPacket*> media_rtp_packets;
std::list<Packet*> media_packets;
for (unsigned int i = 0; i < kNumMediaPackets / 2; ++i) {
std::list<RtpPacket*> frame_media_rtp_packets;
std::list<Packet*> frame_media_packets;
std::list<Packet*> fec_packets;
GenerateFrame(2, 0, &frame_media_rtp_packets, &frame_media_packets);
GenerateFEC(&frame_media_packets, &fec_packets, 1);
for (std::list<Packet*>::iterator it = fec_packets.begin();
it != fec_packets.end(); ++it) {
// Only FEC packets inserted. No packets recoverable at this time.
BuildAndAddRedFecPacket(*it);
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(0);
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
}
media_packets.insert(media_packets.end(), frame_media_packets.begin(),
frame_media_packets.end());
media_rtp_packets.insert(media_rtp_packets.end(),
frame_media_rtp_packets.begin(),
frame_media_rtp_packets.end());
}
// Insert the oldest media packet. The corresponding FEC packet is too old
// and should've been dropped. Only the media packet we inserted will be
// returned.
BuildAndAddRedMediaPacket(media_rtp_packets.front());
EXPECT_CALL(rtp_data_callback_, OnRecoveredPacket(_, _))
.Times(1).WillRepeatedly(Return(true));
EXPECT_EQ(0, receiver_fec_->ProcessReceivedFec());
DeletePackets(&media_packets);
}
void ReceiverFecTest::SurvivesMaliciousPacket(const uint8_t* data,
size_t length,
uint8_t ulpfec_payload_type) {
webrtc::RTPHeader header;
rtc::scoped_ptr<webrtc::RtpHeaderParser> parser(
webrtc::RtpHeaderParser::Create());
ASSERT_TRUE(parser->Parse(data, length, &header));
webrtc::NullRtpData null_callback;
rtc::scoped_ptr<webrtc::FecReceiver> receiver_fec(
webrtc::FecReceiver::Create(&null_callback));
receiver_fec->AddReceivedRedPacket(header, data, length, ulpfec_payload_type);
}
TEST_F(ReceiverFecTest, TruncatedPacketWithFBitSet) {
const uint8_t kTruncatedPacket[] = {0x80,
0x2a,
0x68,
0x71,
0x29,
0xa1,
0x27,
0x3a,
0x29,
0x12,
0x2a,
0x98,
0xe0,
0x29};
SurvivesMaliciousPacket(kTruncatedPacket, sizeof(kTruncatedPacket), 100);
}
TEST_F(ReceiverFecTest, TruncatedPacketWithFBitSetEndingAfterFirstRedHeader) {
const uint8_t kPacket[] = {0x89,
0x27,
0x3a,
0x83,
0x27,
0x3a,
0x3a,
0xf3,
0x67,
0xbe,
0x2a,
0xa9,
0x27,
0x54,
0x3a,
0x3a,
0x2a,
0x67,
0x3a,
0xf3,
0x67,
0xbe,
0x2a,
0x27,
0xe6,
0xf6,
0x03,
0x3e,
0x29,
0x27,
0x21,
0x27,
0x2a,
0x29,
0x21,
0x4b,
0x29,
0x3a,
0x28,
0x29,
0xbf,
0x29,
0x2a,
0x26,
0x29,
0xae,
0x27,
0xa6,
0xf6,
0x00,
0x03,
0x3e};
SurvivesMaliciousPacket(kPacket, sizeof(kPacket), 100);
}
TEST_F(ReceiverFecTest, TruncatedPacketWithoutDataPastFirstBlock) {
const uint8_t kPacket[] = {0x82,
0x38,
0x92,
0x38,
0x92,
0x38,
0xde,
0x2a,
0x11,
0xc8,
0xa3,
0xc4,
0x82,
0x38,
0x2a,
0x21,
0x2a,
0x28,
0x92,
0x38,
0x92,
0x00,
0x00,
0x0a,
0x3a,
0xc8,
0xa3,
0x3a,
0x27,
0xc4,
0x2a,
0x21,
0x2a,
0x28};
SurvivesMaliciousPacket(kPacket, sizeof(kPacket), 100);
}
} // namespace webrtc