Files
platform-external-webrtc/modules/audio_processing/agc2/gain_curve_applier.cc
Alex Loiko 93e5750a92 Reduce digital adaptive AGC2 gain in some situations.
Hypothetical scenario: short weak speech at start of call, then high
noise. The digital adaptive AGC2 would pick a high gain, and then
continue to apply it on the noise. Unless the noise is detected by the
noise estimator, the gain would never be reduced.

This CL addresses the issue by sending limiter gain info to the
adaptive digital AGC2.

Bug: webrtc:7494
Change-Id: Idf5c2686af0f5e5bad981d39a95b8efc9ffb9d64
Reviewed-on: https://webrtc-review.googlesource.com/102641
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Commit-Queue: Alex Loiko <aleloi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24922}
2018-10-02 08:34:10 +00:00

142 lines
5.3 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/gain_curve_applier.h"
#include <algorithm>
#include <array>
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// This constant affects the way scaling factors are interpolated for the first
// sub-frame of a frame. Only in the case in which the first sub-frame has an
// estimated level which is greater than the that of the previous analyzed
// sub-frame, linear interpolation is replaced with a power function which
// reduces the chances of over-shooting (and hence saturation), however reducing
// the fixed gain effectiveness.
constexpr float kAttackFirstSubframeInterpolationPower = 8.f;
void InterpolateFirstSubframe(float last_factor,
float current_factor,
rtc::ArrayView<float> subframe) {
const auto n = subframe.size();
constexpr auto p = kAttackFirstSubframeInterpolationPower;
for (size_t i = 0; i < n; ++i) {
subframe[i] = std::pow(1.f - i / n, p) * (last_factor - current_factor) +
current_factor;
}
}
void ComputePerSampleSubframeFactors(
const std::array<float, kSubFramesInFrame + 1>& scaling_factors,
size_t samples_per_channel,
rtc::ArrayView<float> per_sample_scaling_factors) {
const size_t num_subframes = scaling_factors.size() - 1;
const size_t subframe_size =
rtc::CheckedDivExact(samples_per_channel, num_subframes);
// Handle first sub-frame differently in case of attack.
const bool is_attack = scaling_factors[0] > scaling_factors[1];
if (is_attack) {
InterpolateFirstSubframe(
scaling_factors[0], scaling_factors[1],
rtc::ArrayView<float>(
per_sample_scaling_factors.subview(0, subframe_size)));
}
for (size_t i = is_attack ? 1 : 0; i < num_subframes; ++i) {
const size_t subframe_start = i * subframe_size;
const float scaling_start = scaling_factors[i];
const float scaling_end = scaling_factors[i + 1];
const float scaling_diff = (scaling_end - scaling_start) / subframe_size;
for (size_t j = 0; j < subframe_size; ++j) {
per_sample_scaling_factors[subframe_start + j] =
scaling_start + scaling_diff * j;
}
}
}
void ScaleSamples(rtc::ArrayView<const float> per_sample_scaling_factors,
AudioFrameView<float> signal) {
const size_t samples_per_channel = signal.samples_per_channel();
RTC_DCHECK_EQ(samples_per_channel, per_sample_scaling_factors.size());
for (size_t i = 0; i < signal.num_channels(); ++i) {
auto channel = signal.channel(i);
for (size_t j = 0; j < samples_per_channel; ++j) {
channel[j] *= per_sample_scaling_factors[j];
}
}
}
} // namespace
GainCurveApplier::GainCurveApplier(size_t sample_rate_hz,
ApmDataDumper* apm_data_dumper,
std::string histogram_name)
: interp_gain_curve_(apm_data_dumper, histogram_name),
level_estimator_(sample_rate_hz, apm_data_dumper),
apm_data_dumper_(apm_data_dumper) {}
GainCurveApplier::~GainCurveApplier() = default;
void GainCurveApplier::Process(AudioFrameView<float> signal) {
const auto level_estimate = level_estimator_.ComputeLevel(signal);
RTC_DCHECK_EQ(level_estimate.size() + 1, scaling_factors_.size());
scaling_factors_[0] = last_scaling_factor_;
std::transform(level_estimate.begin(), level_estimate.end(),
scaling_factors_.begin() + 1, [this](float x) {
return interp_gain_curve_.LookUpGainToApply(x);
});
const size_t samples_per_channel = signal.samples_per_channel();
RTC_DCHECK_LE(samples_per_channel, kMaximalNumberOfSamplesPerChannel);
auto per_sample_scaling_factors = rtc::ArrayView<float>(
&per_sample_scaling_factors_[0], samples_per_channel);
ComputePerSampleSubframeFactors(scaling_factors_, samples_per_channel,
per_sample_scaling_factors);
ScaleSamples(per_sample_scaling_factors, signal);
last_scaling_factor_ = scaling_factors_.back();
// Dump data for debug.
apm_data_dumper_->DumpRaw("agc2_gain_curve_applier_scaling_factors",
samples_per_channel,
per_sample_scaling_factors_.data());
}
InterpolatedGainCurve::Stats GainCurveApplier::GetGainCurveStats() const {
return interp_gain_curve_.get_stats();
}
void GainCurveApplier::SetSampleRate(size_t sample_rate_hz) {
level_estimator_.SetSampleRate(sample_rate_hz);
// Check that per_sample_scaling_factors_ is large enough.
RTC_DCHECK_LE(sample_rate_hz,
kMaximalNumberOfSamplesPerChannel * 1000 / kFrameDurationMs);
}
void GainCurveApplier::Reset() {
level_estimator_.Reset();
}
float GainCurveApplier::LastAudioLevel() const {
return level_estimator_.LastAudioLevel();
}
} // namespace webrtc