Files
platform-external-webrtc/webrtc/modules/congestion_controller/delay_based_bwe.cc
terelius 5a388368a2 Implement Theil-Sen's method for fitting a line to noisy data (used in bandwidth estimation).
Theil and Sen's estimator essentially looks at the line through every pair of points and selects the median slope. This is robust to corruption of up to 29% of the data points.

Wire up new estimator to field trial experiment. Add unit and integration tests. Results are promising.

BUG=webrtc:6728

Review-Url: https://codereview.webrtc.org/2512693002
Cr-Commit-Position: refs/heads/master@{#15508}
2016-12-09 13:50:08 +00:00

396 lines
16 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
#include <algorithm>
#include <cmath>
#include <string>
#include "webrtc/base/checks.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/thread_annotations.h"
#include "webrtc/modules/congestion_controller/include/congestion_controller.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "webrtc/system_wrappers/include/field_trial.h"
#include "webrtc/system_wrappers/include/metrics.h"
#include "webrtc/typedefs.h"
namespace {
constexpr int kTimestampGroupLengthMs = 5;
constexpr int kAbsSendTimeFraction = 18;
constexpr int kAbsSendTimeInterArrivalUpshift = 8;
constexpr int kInterArrivalShift =
kAbsSendTimeFraction + kAbsSendTimeInterArrivalUpshift;
constexpr double kTimestampToMs =
1000.0 / static_cast<double>(1 << kInterArrivalShift);
// This ssrc is used to fulfill the current API but will be removed
// after the API has been changed.
constexpr uint32_t kFixedSsrc = 0;
constexpr int kInitialRateWindowMs = 500;
constexpr int kRateWindowMs = 150;
// Parameters for linear least squares fit of regression line to noisy data.
constexpr size_t kDefaultTrendlineWindowSize = 15;
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
// Parameters for Theil-Sen robust fitting of line to noisy data.
constexpr size_t kDefaultMedianSlopeWindowSize = 20;
constexpr double kDefaultMedianSlopeThresholdGain = 4.0;
const char kBitrateEstimateExperiment[] = "WebRTC-ImprovedBitrateEstimate";
const char kBweTrendlineFilterExperiment[] = "WebRTC-BweTrendlineFilter";
const char kBweMedianSlopeFilterExperiment[] = "WebRTC-BweMedianSlopeFilter";
bool BitrateEstimateExperimentIsEnabled() {
return webrtc::field_trial::FindFullName(kBitrateEstimateExperiment) ==
"Enabled";
}
bool TrendlineFilterExperimentIsEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool MedianSlopeFilterExperimentIsEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweMedianSlopeFilterExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool ReadTrendlineFilterExperimentParameters(size_t* window_size,
double* smoothing_coef,
double* threshold_gain) {
RTC_DCHECK(TrendlineFilterExperimentIsEnabled());
RTC_DCHECK(!MedianSlopeFilterExperimentIsEnabled());
RTC_DCHECK(window_size != nullptr);
RTC_DCHECK(smoothing_coef != nullptr);
RTC_DCHECK(threshold_gain != nullptr);
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf,%lf",
window_size, smoothing_coef, threshold_gain);
if (parsed_values == 3) {
RTC_CHECK_GT(*window_size, 1) << "Need at least 2 points to fit a line.";
RTC_CHECK(0 <= *smoothing_coef && *smoothing_coef <= 1)
<< "Coefficient needs to be between 0 and 1 for weighted average.";
RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
return true;
}
LOG(LS_WARNING) << "Failed to parse parameters for BweTrendlineFilter "
"experiment from field trial string. Using default.";
*window_size = kDefaultTrendlineWindowSize;
*smoothing_coef = kDefaultTrendlineSmoothingCoeff;
*threshold_gain = kDefaultTrendlineThresholdGain;
return false;
}
bool ReadMedianSlopeFilterExperimentParameters(size_t* window_size,
double* threshold_gain) {
RTC_DCHECK(!TrendlineFilterExperimentIsEnabled());
RTC_DCHECK(MedianSlopeFilterExperimentIsEnabled());
RTC_DCHECK(window_size != nullptr);
RTC_DCHECK(threshold_gain != nullptr);
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweMedianSlopeFilterExperiment);
int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf",
window_size, threshold_gain);
if (parsed_values == 2) {
RTC_CHECK_GT(*window_size, 1) << "Need at least 2 points to fit a line.";
RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
return true;
}
LOG(LS_WARNING) << "Failed to parse parameters for BweMedianSlopeFilter "
"experiment from field trial string. Using default.";
*window_size = kDefaultMedianSlopeWindowSize;
*threshold_gain = kDefaultMedianSlopeThresholdGain;
return false;
}
} // namespace
namespace webrtc {
DelayBasedBwe::BitrateEstimator::BitrateEstimator()
: sum_(0),
current_win_ms_(0),
prev_time_ms_(-1),
bitrate_estimate_(-1.0f),
bitrate_estimate_var_(50.0f),
old_estimator_(kBitrateWindowMs, 8000),
in_experiment_(BitrateEstimateExperimentIsEnabled()) {}
void DelayBasedBwe::BitrateEstimator::Update(int64_t now_ms, int bytes) {
if (!in_experiment_) {
old_estimator_.Update(bytes, now_ms);
rtc::Optional<uint32_t> rate = old_estimator_.Rate(now_ms);
bitrate_estimate_ = -1.0f;
if (rate)
bitrate_estimate_ = *rate / 1000.0f;
return;
}
int rate_window_ms = kRateWindowMs;
// We use a larger window at the beginning to get a more stable sample that
// we can use to initialize the estimate.
if (bitrate_estimate_ < 0.f)
rate_window_ms = kInitialRateWindowMs;
float bitrate_sample = UpdateWindow(now_ms, bytes, rate_window_ms);
if (bitrate_sample < 0.0f)
return;
if (bitrate_estimate_ < 0.0f) {
// This is the very first sample we get. Use it to initialize the estimate.
bitrate_estimate_ = bitrate_sample;
return;
}
// Define the sample uncertainty as a function of how far away it is from the
// current estimate.
float sample_uncertainty =
10.0f * std::abs(bitrate_estimate_ - bitrate_sample) / bitrate_estimate_;
float sample_var = sample_uncertainty * sample_uncertainty;
// Update a bayesian estimate of the rate, weighting it lower if the sample
// uncertainty is large.
// The bitrate estimate uncertainty is increased with each update to model
// that the bitrate changes over time.
float pred_bitrate_estimate_var = bitrate_estimate_var_ + 5.f;
bitrate_estimate_ = (sample_var * bitrate_estimate_ +
pred_bitrate_estimate_var * bitrate_sample) /
(sample_var + pred_bitrate_estimate_var);
bitrate_estimate_var_ = sample_var * pred_bitrate_estimate_var /
(sample_var + pred_bitrate_estimate_var);
}
float DelayBasedBwe::BitrateEstimator::UpdateWindow(int64_t now_ms,
int bytes,
int rate_window_ms) {
// Reset if time moves backwards.
if (now_ms < prev_time_ms_) {
prev_time_ms_ = -1;
sum_ = 0;
current_win_ms_ = 0;
}
if (prev_time_ms_ >= 0) {
current_win_ms_ += now_ms - prev_time_ms_;
// Reset if nothing has been received for more than a full window.
if (now_ms - prev_time_ms_ > rate_window_ms) {
sum_ = 0;
current_win_ms_ %= rate_window_ms;
}
}
prev_time_ms_ = now_ms;
float bitrate_sample = -1.0f;
if (current_win_ms_ >= rate_window_ms) {
bitrate_sample = 8.0f * sum_ / static_cast<float>(rate_window_ms);
current_win_ms_ -= rate_window_ms;
sum_ = 0;
}
sum_ += bytes;
return bitrate_sample;
}
rtc::Optional<uint32_t> DelayBasedBwe::BitrateEstimator::bitrate_bps() const {
if (bitrate_estimate_ < 0.f)
return rtc::Optional<uint32_t>();
return rtc::Optional<uint32_t>(bitrate_estimate_ * 1000);
}
DelayBasedBwe::DelayBasedBwe(Clock* clock)
: in_trendline_experiment_(TrendlineFilterExperimentIsEnabled()),
in_median_slope_experiment_(MedianSlopeFilterExperimentIsEnabled()),
clock_(clock),
inter_arrival_(),
kalman_estimator_(),
trendline_estimator_(),
detector_(OverUseDetectorOptions()),
receiver_incoming_bitrate_(),
last_update_ms_(-1),
last_seen_packet_ms_(-1),
uma_recorded_(false),
trendline_window_size_(kDefaultTrendlineWindowSize),
trendline_smoothing_coeff_(kDefaultTrendlineSmoothingCoeff),
trendline_threshold_gain_(kDefaultTrendlineThresholdGain),
probing_interval_estimator_(&rate_control_),
median_slope_window_size_(kDefaultMedianSlopeWindowSize),
median_slope_threshold_gain_(kDefaultMedianSlopeThresholdGain) {
if (in_trendline_experiment_) {
ReadTrendlineFilterExperimentParameters(&trendline_window_size_,
&trendline_smoothing_coeff_,
&trendline_threshold_gain_);
}
if (in_median_slope_experiment_) {
ReadMedianSlopeFilterExperimentParameters(&trendline_window_size_,
&trendline_threshold_gain_);
}
network_thread_.DetachFromThread();
}
DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedbackVector(
const std::vector<PacketInfo>& packet_feedback_vector) {
RTC_DCHECK(network_thread_.CalledOnValidThread());
if (!uma_recorded_) {
RTC_HISTOGRAM_ENUMERATION(kBweTypeHistogram,
BweNames::kSendSideTransportSeqNum,
BweNames::kBweNamesMax);
uma_recorded_ = true;
}
Result aggregated_result;
for (const auto& packet_info : packet_feedback_vector) {
Result result = IncomingPacketInfo(packet_info);
if (result.updated)
aggregated_result = result;
}
return aggregated_result;
}
DelayBasedBwe::Result DelayBasedBwe::IncomingPacketInfo(
const PacketInfo& info) {
int64_t now_ms = clock_->TimeInMilliseconds();
receiver_incoming_bitrate_.Update(info.arrival_time_ms, info.payload_size);
Result result;
// Reset if the stream has timed out.
if (last_seen_packet_ms_ == -1 ||
now_ms - last_seen_packet_ms_ > kStreamTimeOutMs) {
inter_arrival_.reset(
new InterArrival((kTimestampGroupLengthMs << kInterArrivalShift) / 1000,
kTimestampToMs, true));
kalman_estimator_.reset(new OveruseEstimator(OverUseDetectorOptions()));
trendline_estimator_.reset(new TrendlineEstimator(
trendline_window_size_, trendline_smoothing_coeff_,
trendline_threshold_gain_));
median_slope_estimator_.reset(new MedianSlopeEstimator(
median_slope_window_size_, median_slope_threshold_gain_));
}
last_seen_packet_ms_ = now_ms;
uint32_t send_time_24bits =
static_cast<uint32_t>(
((static_cast<uint64_t>(info.send_time_ms) << kAbsSendTimeFraction) +
500) /
1000) &
0x00FFFFFF;
// Shift up send time to use the full 32 bits that inter_arrival works with,
// so wrapping works properly.
uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift;
uint32_t ts_delta = 0;
int64_t t_delta = 0;
int size_delta = 0;
if (inter_arrival_->ComputeDeltas(timestamp, info.arrival_time_ms, now_ms,
info.payload_size, &ts_delta, &t_delta,
&size_delta)) {
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
if (in_trendline_experiment_) {
trendline_estimator_->Update(t_delta, ts_delta_ms, info.arrival_time_ms);
detector_.Detect(trendline_estimator_->trendline_slope(), ts_delta_ms,
trendline_estimator_->num_of_deltas(),
info.arrival_time_ms);
} else if (in_median_slope_experiment_) {
median_slope_estimator_->Update(t_delta, ts_delta_ms,
info.arrival_time_ms);
detector_.Detect(median_slope_estimator_->trendline_slope(), ts_delta_ms,
median_slope_estimator_->num_of_deltas(),
info.arrival_time_ms);
} else {
kalman_estimator_->Update(t_delta, ts_delta_ms, size_delta,
detector_.State(), info.arrival_time_ms);
detector_.Detect(kalman_estimator_->offset(), ts_delta_ms,
kalman_estimator_->num_of_deltas(),
info.arrival_time_ms);
}
}
int probing_bps = 0;
if (info.probe_cluster_id != PacketInfo::kNotAProbe) {
probing_bps = probe_bitrate_estimator_.HandleProbeAndEstimateBitrate(info);
}
rtc::Optional<uint32_t> acked_bitrate_bps =
receiver_incoming_bitrate_.bitrate_bps();
// Currently overusing the bandwidth.
if (detector_.State() == kBwOverusing) {
if (acked_bitrate_bps &&
rate_control_.TimeToReduceFurther(now_ms, *acked_bitrate_bps)) {
result.updated =
UpdateEstimate(info.arrival_time_ms, now_ms, acked_bitrate_bps,
&result.target_bitrate_bps);
}
} else if (probing_bps > 0) {
// No overuse, but probing measured a bitrate.
rate_control_.SetEstimate(probing_bps, info.arrival_time_ms);
result.probe = true;
result.updated =
UpdateEstimate(info.arrival_time_ms, now_ms, acked_bitrate_bps,
&result.target_bitrate_bps);
}
if (!result.updated &&
(last_update_ms_ == -1 ||
now_ms - last_update_ms_ > rate_control_.GetFeedbackInterval())) {
result.updated =
UpdateEstimate(info.arrival_time_ms, now_ms, acked_bitrate_bps,
&result.target_bitrate_bps);
}
if (result.updated) {
last_update_ms_ = now_ms;
BWE_TEST_LOGGING_PLOT(1, "target_bitrate_bps", now_ms,
result.target_bitrate_bps);
}
return result;
}
bool DelayBasedBwe::UpdateEstimate(int64_t arrival_time_ms,
int64_t now_ms,
rtc::Optional<uint32_t> acked_bitrate_bps,
uint32_t* target_bitrate_bps) {
// TODO(terelius): RateControlInput::noise_var is deprecated and will be
// removed. In the meantime, we set it to zero.
const RateControlInput input(detector_.State(), acked_bitrate_bps, 0);
rate_control_.Update(&input, now_ms);
*target_bitrate_bps = rate_control_.UpdateBandwidthEstimate(now_ms);
return rate_control_.ValidEstimate();
}
void DelayBasedBwe::OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) {
rate_control_.SetRtt(avg_rtt_ms);
}
bool DelayBasedBwe::LatestEstimate(std::vector<uint32_t>* ssrcs,
uint32_t* bitrate_bps) const {
// Currently accessed from both the process thread (see
// ModuleRtpRtcpImpl::Process()) and the configuration thread (see
// Call::GetStats()). Should in the future only be accessed from a single
// thread.
RTC_DCHECK(ssrcs);
RTC_DCHECK(bitrate_bps);
if (!rate_control_.ValidEstimate())
return false;
*ssrcs = {kFixedSsrc};
*bitrate_bps = rate_control_.LatestEstimate();
return true;
}
void DelayBasedBwe::SetMinBitrate(int min_bitrate_bps) {
// Called from both the configuration thread and the network thread. Shouldn't
// be called from the network thread in the future.
rate_control_.SetMinBitrate(min_bitrate_bps);
}
int64_t DelayBasedBwe::GetProbingIntervalMs() const {
return probing_interval_estimator_.GetIntervalMs();
}
} // namespace webrtc