This commit is contained in:
x
2017-03-19 13:31:44 +01:00
parent d13b91c839
commit b31116fa21

View File

@ -1,43 +1,43 @@
TurboPFor: Fastest Integer Compression [![Build Status](https://travis-ci.org/powturbo/TurboPFor.svg?branch=master)](https://travis-ci.org/powturbo/TurboPFor)
======================================
* **TurboPFor: The new synonym for "integer compression"**
* 100% C (C++ headers), as simple as memcpy
* :+1: **Java** Critical Natives/JNI. Access TurboPFor **incl. SIMD/AVX2!** from Java as fast as calling from C
* :sparkles: **FULL** range 8/16/32/64 bits lists
* No other "Integer Compression" compress/decompress faster
* :sparkles: Direct Access, **integrated** (SIMD/AVX2) FOR/delta/Zigzag for sorted/unsorted arrays
* 100% C (C++ headers), as simple as memcpy
* :+1: **Java** Critical Natives/JNI. Access TurboPFor **incl. SIMD/AVX2!** from Java as fast as calling from C
* :sparkles: **FULL** range 8/16/32/64 bits lists
* No other "Integer Compression" compress/decompress faster
* :sparkles: Direct Access, **integrated** (SIMD/AVX2) FOR/delta/Zigzag for sorted/unsorted arrays
* **For/PFor/PForDelta**
* **Novel** **"TurboPFor"** (PFor/PForDelta) scheme w./ **direct access**.
* Outstanding compression/speed. More efficient than **ANY** other fast "integer compression" scheme.
* Compress 70 times faster and decompress up to 4 times faster than OptPFD
* :new: **TurboPFor AVX2, now 50%! more faster!!!!**
* :new: **TurboPFor Hybrid, better compression and more faster**
* **Novel** **"TurboPFor"** (PFor/PForDelta) scheme w./ **direct access**.
* Outstanding compression/speed. More efficient than **ANY** other fast "integer compression" scheme.
* Compress 70 times faster and decompress up to 4 times faster than OptPFD
* :new: **TurboPFor AVX2, now 50%! more faster!!!!**
* :new: **TurboPFor Hybrid, better compression and more faster**
* **Bit Packing**
* :sparkles: Fastest and most efficient **"SIMD Bit Packing"**
* :new: TurboPack AVX2 more faster. **Decoding 10 Billions intergers/seconds (40Gb/s)**
* :new: more faster. Scalar **"Bit Packing"** decoding as fast as SIMD-Packing in realistic (No "pure cache") scenarios
* **Direct/Random Access** : Access any single bit packed entry with **zero decompression**
* :sparkles: Fastest and most efficient **"SIMD Bit Packing"**
* :new: TurboPack AVX2 more faster. **Decoding 10 Billions intergers/seconds (40Gb/s)**
* :new: more faster. Scalar **"Bit Packing"** decoding as fast as SIMD-Packing in realistic (No "pure cache") scenarios
* **Direct/Random Access** : Access any single bit packed entry with **zero decompression**
* **Variable byte**
* :sparkles: Scalar **"Variable Byte"** faster than **ANY** other (incl. SIMD) implementation
* :new: **new scheme : better compression and 30% faster**
* :sparkles: Scalar **"Variable Byte"** faster than **ANY** other (incl. SIMD) implementation
* :new: **new scheme : better compression and 30% faster**
* **Simple family**
* :sparkles: **Novel** **"Variable Simple"** (incl. **RLE**) faster and more efficient than simple16, simple-8b
* :sparkles: **Novel** **"Variable Simple"** (incl. **RLE**) faster and more efficient than simple16, simple-8b
* **Elias fano**
* :sparkles: Fastest **"Elias Fano"** implementation w/ or w/o SIMD/AVX2
* :sparkles: Fastest **"Elias Fano"** implementation w/ or w/o SIMD/AVX2
+ **Transform**
* :sparkles: Scalar & SIMD Transform: Delta, Zigzag, Transpose/Shuffle
* :sparkles: Scalar & SIMD Transform: Delta, Zigzag, Transpose/Shuffle
<p>
* **Floating Point Compression**
* :new: (Differential) Finite Context Method FCM/DFCM floating point compression
* Using **TurboPFor**, more than 2 GB/s throughput
* :new: (Differential) Finite Context Method FCM/DFCM floating point compression
* Using **TurboPFor**, more than 2 GB/s throughput
<p>
* **Inverted Index ...do less, go fast!**
* Direct Access to compressed *frequency* and *position* data w/ zero decompression
* :sparkles: **Novel** **"Intersection w/ skip intervals"**, decompress the minimum necessary blocks (**~10-15%)!**.
* **Novel** Implicit skips with zero extra overhead
* **Novel** Efficient **Bidirectional** Inverted Index Architecture (forward/backwards traversal) incl. "integer compression".
* more than **2000! queries per second** on GOV2 dataset (25 millions documents) on a **SINGLE** core
* :sparkles: Revolutionary Parallel Query Processing on Multicores w/ more than **7000!!! queries/sec** on a simple quad core PC.<br>
* Direct Access to compressed *frequency* and *position* data w/ zero decompression
* :sparkles: **Novel** **"Intersection w/ skip intervals"**, decompress the minimum necessary blocks (**~10-15%)!**.
* **Novel** Implicit skips with zero extra overhead
* **Novel** Efficient **Bidirectional** Inverted Index Architecture (forward/backwards traversal) incl. "integer compression".
* more than **2000! queries per second** on GOV2 dataset (25 millions documents) on a **SINGLE** core
* :sparkles: Revolutionary Parallel Query Processing on Multicores w/ more than **7000!!! queries/sec** on a simple quad core PC.<br>
**...forget** ~~Map Reduce, Hadoop, multi-node clusters,~~ ...
### Integer Compression Benchmark: