Files
TurboPFor-Integer-Compression/bitutil.h
2019-12-21 14:06:33 +01:00

486 lines
28 KiB
C

/**
Copyright (C) powturbo 2013-2019
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- homepage : https://sites.google.com/site/powturbo/
- github : https://github.com/powturbo
- twitter : https://twitter.com/powturbo
- email : powturbo [_AT_] gmail [_DOT_] com
**/
// "Integer Compression: max.bits, delta, zigzag, xor"
#ifdef BITUTIL_IN
#ifdef __AVX2__
#include <immintrin.h>
#elif defined(__AVX__)
#include <immintrin.h>
#elif defined(__SSE4_1__)
#include <smmintrin.h>
#elif defined(__SSSE3__)
#ifdef __powerpc64__
#define __SSE__ 1
#define __SSE2__ 1
#define __SSE3__ 1
#define NO_WARN_X86_INTRINSICS 1
#endif
#include <tmmintrin.h>
#elif defined(__SSE2__)
#include <emmintrin.h>
#elif defined(__ARM_NEON)
#include <arm_neon.h>
#endif
#if defined(_MSC_VER) && _MSC_VER < 1600
#include "vs/stdint.h"
#else
#include <stdint.h>
#endif
#include "sse_neon.h"
#ifdef __ARM_NEON
#define PREFETCH(_ip_,_rw_)
#else
#define PREFETCH(_ip_,_rw_) __builtin_prefetch(_ip_,_rw_)
#endif
//------------------------ zigzag encoding -------------------------------------------------------------
static inline unsigned char zigzagenc8( signed char x) { return x << 1 ^ x >> 7; }
static inline char zigzagdec8( unsigned char x) { return x >> 1 ^ -(x & 1); }
static inline unsigned short zigzagenc16(short x) { return x << 1 ^ x >> 15; }
static inline short zigzagdec16(unsigned short x) { return x >> 1 ^ -(x & 1); }
static inline unsigned zigzagenc32(int x) { return x << 1 ^ x >> 31; }
static inline int zigzagdec32(unsigned x) { return x >> 1 ^ -(x & 1); }
static inline uint64_t zigzagenc64(int64_t x) { return x << 1 ^ x >> 63; }
static inline int64_t zigzagdec64(uint64_t x) { return x >> 1 ^ -(x & 1); }
#if defined(__SSE2__) || defined(__ARM_NEON)
static ALWAYS_INLINE __m128i mm_zzage_epi16(__m128i v) { return _mm_xor_si128(_mm_slli_epi16(v,1), _mm_srai_epi16(v,15)); }
static ALWAYS_INLINE __m128i mm_zzage_epi32(__m128i v) { return _mm_xor_si128(_mm_slli_epi32(v,1), _mm_srai_epi32(v,31)); }
//static ALWAYS_INLINE __m128i mm_zzage_epi64(__m128i v) { return _mm_xor_si128(_mm_slli_epi64(v,1), _mm_srai_epi64(v,63)); }
static ALWAYS_INLINE __m128i mm_zzagd_epi16(__m128i v) { return _mm_xor_si128(_mm_srli_epi16(v,1), _mm_srai_epi16(_mm_slli_epi16(v,15),15) ); }
static ALWAYS_INLINE __m128i mm_zzagd_epi32(__m128i v) { return _mm_xor_si128(_mm_srli_epi32(v,1), _mm_srai_epi32(_mm_slli_epi32(v,31),31) ); }
//static ALWAYS_INLINE __m128i mm_zzagd_epi64(__m128i v) { return _mm_xor_si128(_mm_srli_epi64(v,1), _mm_srai_epi64(_mm_slli_epi64(v,63),63) ); }
#endif
#ifdef __AVX2__
static ALWAYS_INLINE __m256i mm256_zzage_epi32(__m256i v) { return _mm256_xor_si256(_mm256_slli_epi32(v,1), _mm256_srai_epi32(v,31)); }
static ALWAYS_INLINE __m256i mm256_zzagd_epi32(__m256i v) { return _mm256_xor_si256(_mm256_srli_epi32(v,1), _mm256_srai_epi32(_mm256_slli_epi32(v,31),31) ); }
#endif
//-------------- AVX2 delta + prefix sum (scan) / xor encode/decode ---------------------------------------------------------------------------------------
#ifdef __AVX2__
static ALWAYS_INLINE __m256i mm256_delta_epi32(__m256i v, __m256i sv) { return _mm256_sub_epi32(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 12)); }
static ALWAYS_INLINE __m256i mm256_delta_epi64(__m256i v, __m256i sv) { return _mm256_sub_epi64(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 8)); }
static ALWAYS_INLINE __m256i mm256_xore_epi32( __m256i v, __m256i sv) { return _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 12)); }
static ALWAYS_INLINE __m256i mm256_xore_epi64( __m256i v, __m256i sv) { return _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 8)); }
static ALWAYS_INLINE __m256i mm256_scan_epi32(__m256i v, __m256i sv) {
v = _mm256_add_epi32(v, _mm256_slli_si256(v, 4));
v = _mm256_add_epi32(v, _mm256_slli_si256(v, 8));
return _mm256_add_epi32( _mm256_permute2x128_si256( _mm256_shuffle_epi32(sv,_MM_SHUFFLE(3, 3, 3, 3)), sv, 0x11),
_mm256_add_epi32(v, _mm256_permute2x128_si256(_mm256_setzero_si256(),_mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 3, 3)), 0x20)));
}
static ALWAYS_INLINE __m256i mm256_xord_epi32(__m256i v, __m256i sv) {
v = _mm256_xor_si256(v, _mm256_slli_si256(v, 4));
v = _mm256_xor_si256(v, _mm256_slli_si256(v, 8));
return _mm256_xor_si256( _mm256_permute2x128_si256( _mm256_shuffle_epi32(sv,_MM_SHUFFLE(3, 3, 3, 3)), sv, 0x11),
_mm256_xor_si256(v, _mm256_permute2x128_si256(_mm256_setzero_si256(),_mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 3, 3)), 0x20)));
}
static ALWAYS_INLINE __m256i mm256_scan_epi64(__m256i v, __m256i sv) {
v = _mm256_add_epi64(v, _mm256_alignr_epi8(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), 8));
return _mm256_add_epi64(_mm256_permute4x64_epi64(sv, _MM_SHUFFLE(3, 3, 3, 3)), _mm256_add_epi64(_mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), v) );
}
static ALWAYS_INLINE __m256i mm256_xord_epi64(__m256i v, __m256i sv) {
v = _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), 8));
return _mm256_xor_si256(_mm256_permute4x64_epi64(sv, _MM_SHUFFLE(3, 3, 3, 3)), _mm256_xor_si256(_mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), v) );
}
static ALWAYS_INLINE __m256i mm256_scani_epi32(__m256i v, __m256i sv, __m256i vi) { return _mm256_add_epi32(mm256_scan_epi32(v, sv), vi); }
#endif
#if defined(__SSSE3__) || defined(__ARM_NEON)
static ALWAYS_INLINE __m128i mm_delta_epi16(__m128i v, __m128i sv) { return _mm_sub_epi16(v, _mm_alignr_epi8(v, sv, 14)); }
static ALWAYS_INLINE __m128i mm_delta_epi32(__m128i v, __m128i sv) { return _mm_sub_epi32(v, _mm_alignr_epi8(v, sv, 12)); }
static ALWAYS_INLINE __m128i mm_xore_epi16( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 14)); }
static ALWAYS_INLINE __m128i mm_xore_epi32( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 12)); }
#define MM_HDEC_EPI32(_v_,_sv_,_hop_) { _v_ = _hop_(_v_, _mm_slli_si128(_v_, 4)); _v_ = _hop_(mm_shuffle_nnnn_epi32(_sv_, 3), _hop_(_mm_slli_si128(_v_, 8), _v_)); }
static ALWAYS_INLINE __m128i mm_scan_epi32(__m128i v, __m128i sv) { MM_HDEC_EPI32(v,sv,_mm_add_epi32); return v; }
static ALWAYS_INLINE __m128i mm_xord_epi32(__m128i v, __m128i sv) { MM_HDEC_EPI32(v,sv,_mm_xor_si128); return v; }
#define MM_HDEC_EPI16(_v_,_sv_,_hop_) {\
_v_ = _hop_( _v_, _mm_slli_si128(_v_, 2));\
_v_ = _hop_( _v_, _mm_slli_si128(_v_, 4));\
_v_ = _hop_(_hop_(_v_, _mm_slli_si128(_v_, 8)), _mm_shuffle_epi8(_sv_, _mm_set1_epi16(0x0f0e)));\
}
static ALWAYS_INLINE __m128i mm_scan_epi16(__m128i v, __m128i sv) { MM_HDEC_EPI16(v,sv,_mm_add_epi16); return v; }
static ALWAYS_INLINE __m128i mm_xord_epi16(__m128i v, __m128i sv) { MM_HDEC_EPI16(v,sv,_mm_xor_si128); return v; }
//-------- scan with vi delta > 0 -----------------------------
static ALWAYS_INLINE __m128i mm_scani_epi16(__m128i v, __m128i sv, __m128i vi) { return _mm_add_epi16(mm_scan_epi16(v, sv), vi); }
static ALWAYS_INLINE __m128i mm_scani_epi32(__m128i v, __m128i sv, __m128i vi) { return _mm_add_epi32(mm_scan_epi32(v, sv), vi); }
#elif defined(__SSE2__)
static ALWAYS_INLINE __m128i mm_delta_epi16(__m128i v, __m128i sv) { return _mm_sub_epi16(v, _mm_or_si128(_mm_srli_si128(sv, 14), _mm_slli_si128(v, 2))); }
static ALWAYS_INLINE __m128i mm_xore_epi16( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_or_si128(_mm_srli_si128(sv, 14), _mm_slli_si128(v, 2))); }
static ALWAYS_INLINE __m128i mm_delta_epi32(__m128i v, __m128i sv) { return _mm_sub_epi32(v, _mm_or_si128(_mm_srli_si128(sv, 12), _mm_slli_si128(v, 4))); }
static ALWAYS_INLINE __m128i mm_xore_epi32( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_or_si128(_mm_srli_si128(sv, 12), _mm_slli_si128(v, 4))); }
#endif
#if !defined(_M_X64) && !defined(__x86_64__) && defined(__AVX__)
#define _mm256_extract_epi64(v, index) ((__int64)((uint64_t)(uint32_t)_mm256_extract_epi32((v), (index) * 2) | (((uint64_t)(uint32_t)_mm256_extract_epi32((v), (index) * 2 + 1)) << 32)))
#endif
//------------------ Horizontal OR -----------------------------------------------
#ifdef __AVX2__
static ALWAYS_INLINE unsigned mm256_hor_epi32(__m256i v) {
v = _mm256_or_si256(v, _mm256_srli_si256(v, 8));
v = _mm256_or_si256(v, _mm256_srli_si256(v, 4));
return _mm256_extract_epi32(v,0) | _mm256_extract_epi32(v, 4);
}
static ALWAYS_INLINE uint64_t mm256_hor_epi64(__m256i v) {
v = _mm256_or_si256(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(2, 0, 0, 1)));
return _mm256_extract_epi64(v, 1) | _mm256_extract_epi64(v,0);
}
#endif
#if defined(__SSE2__) || defined(__ARM_NEON)
#define MM_HOZ_EPI16(v,_hop_) {\
v = _hop_(v, _mm_srli_si128(v, 8));\
v = _hop_(v, _mm_srli_si128(v, 6));\
v = _hop_(v, _mm_srli_si128(v, 4));\
v = _hop_(v, _mm_srli_si128(v, 2));\
}
#define MM_HOZ_EPI32(v,_hop_) {\
v = _hop_(v, _mm_srli_si128(v, 8));\
v = _hop_(v, _mm_srli_si128(v, 4));\
}
static ALWAYS_INLINE uint16_t mm_hor_epi16( __m128i v) { MM_HOZ_EPI16(v,_mm_or_si128); return (unsigned short)_mm_cvtsi128_si32(v); }
static ALWAYS_INLINE uint32_t mm_hor_epi32( __m128i v) { MM_HOZ_EPI32(v,_mm_or_si128); return (unsigned )_mm_cvtsi128_si32(v); }
static ALWAYS_INLINE uint64_t mm_hor_epi64( __m128i v) { v = _mm_or_si128( v, _mm_srli_si128(v, 8)); return (uint64_t )_mm_cvtsi128_si64(v); }
#endif
//----------------- sub / add ----------------------------------------------------------
#if defined(__SSE2__) || defined(__ARM_NEON)
#define SUBI16x8(_v_, _sv_) _mm_sub_epi16(_v_, _sv_)
#define SUBI32x4(_v_, _sv_) _mm_sub_epi32(_v_, _sv_)
#define ADDI16x8(_v_, _sv_, _vi_) _sv_ = _mm_add_epi16(_mm_add_epi16(_sv_, _vi_),_v_)
#define ADDI32x4(_v_, _sv_, _vi_) _sv_ = _mm_add_epi32(_mm_add_epi32(_sv_, _vi_),_v_)
//---------------- Convert _mm_cvtsi128_siXX -------------------------------------------
static ALWAYS_INLINE uint8_t _mm_cvtsi128_si8 (__m128i v) { return (uint8_t )_mm_cvtsi128_si32(v); }
static ALWAYS_INLINE uint16_t _mm_cvtsi128_si16(__m128i v) { return (uint16_t)_mm_cvtsi128_si32(v); }
#endif
//--------- memset -----------------------------------------
#define BITFORSET_(_out_, _n_, _start_, _mindelta_) do { unsigned _i;\
for(_i = 0; _i != (_n_&~3); _i+=4) { \
_out_[_i+0] = _start_+(_i )*_mindelta_; \
_out_[_i+1] = _start_+(_i+1)*_mindelta_; \
_out_[_i+2] = _start_+(_i+2)*_mindelta_; \
_out_[_i+3] = _start_+(_i+3)*_mindelta_; \
} \
while(_i != _n_) \
_out_[_i] = _start_+_i*_mindelta_, ++_i; \
} while(0)
//--------- SIMD zero -----------------------------------------
#ifdef __AVX2__
#define BITZERO32(_out_, _n_, _start_) do {\
__m256i _sv_ = _mm256_set1_epi32(_start_), *_ov = (__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_);\
do _mm256_storeu_si256(_ov++, _sv_); while(_ov < _ove);\
} while(0)
#define BITFORZERO32(_out_, _n_, _start_, _mindelta_) do {\
__m256i _sv = _mm256_set1_epi32(_start_), *_ov=(__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_), _cv = _mm256_set_epi32(7+_mindelta_,6+_mindelta_,5+_mindelta_,4+_mindelta_,3*_mindelta_,2*_mindelta_,1*_mindelta_,0); \
_sv = _mm256_add_epi32(_sv, _cv);\
_cv = _mm256_set1_epi32(4);\
do { _mm256_storeu_si256(_ov++, _sv); _sv = _mm256_add_epi32(_sv, _cv); } while(_ov < _ove);\
} while(0)
#define BITDIZERO32(_out_, _n_, _start_, _mindelta_) do { __m256i _sv = _mm256_set1_epi32(_start_), _cv = _mm256_set_epi32(7+_mindelta_,6+_mindelta_,5+_mindelta_,4+_mindelta_,3+_mindelta_,2+_mindelta_,1+_mindelta_,_mindelta_), *_ov=(__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_);\
_sv = _mm256_add_epi32(_sv, _cv); _cv = _mm256_set1_epi32(4*_mindelta_); do { _mm256_storeu_si256(_ov++, _sv), _sv = _mm256_add_epi32(_sv, _cv); } while(_ov < _ove);\
} while(0)
#elif defined(__SSE2__) || defined(__ARM_NEON) // -------------
// SIMD set value (memset)
#define BITZERO32(_out_, _n_, _v_) do {\
__m128i _sv_ = _mm_set1_epi32(_v_), *_ov = (__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_);\
do _mm_storeu_si128(_ov++, _sv_); while(_ov < _ove); \
} while(0)
#define BITFORZERO32(_out_, _n_, _start_, _mindelta_) do {\
__m128i _sv = _mm_set1_epi32(_start_), *_ov=(__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_), _cv = _mm_set_epi32(3*_mindelta_,2*_mindelta_,1*_mindelta_,0); \
_sv = _mm_add_epi32(_sv, _cv);\
_cv = _mm_set1_epi32(4);\
do { _mm_storeu_si128(_ov++, _sv); _sv = _mm_add_epi32(_sv, _cv); } while(_ov < _ove);\
} while(0)
#define BITDIZERO32(_out_, _n_, _start_, _mindelta_) do { __m128i _sv = _mm_set1_epi32(_start_), _cv = _mm_set_epi32(3+_mindelta_,2+_mindelta_,1+_mindelta_,_mindelta_), *_ov=(__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_);\
_sv = _mm_add_epi32(_sv, _cv); _cv = _mm_set1_epi32(4*_mindelta_); do { _mm_storeu_si128(_ov++, _sv), _sv = _mm_add_epi32(_sv, _cv); } while(_ov < _ove);\
} while(0)
#else
#define BITFORZERO32(_out_, _n_, _start_, _mindelta_) BITFORSET_(_out_, _n_, _start_, _mindelta_)
#define BITZERO32( _out_, _n_, _start_) BITFORSET_(_out_, _n_, _start_, 0)
#endif
#define DELTR( _in_, _n_, _start_, _mindelta_, _out_) { unsigned _v; for( _v = 0; _v < _n_; _v++) _out_[_v] = _in_[_v] - (_start_) - _v*(_mindelta_) - (_mindelta_); }
#define DELTRB(_in_, _n_, _start_, _mindelta_, _b_, _out_) { unsigned _v; for(_b_=0,_v = 0; _v < _n_; _v++) _out_[_v] = _in_[_v] - (_start_) - _v*(_mindelta_) - (_mindelta_), _b_ |= _out_[_v]; _b_ = bsr32(_b_); }
//----------------------------------------- bitreverse scalar + SIMD -------------------------------------------
#if __clang__ //__has_builtin(__builtin_bitreverse64)
#define rbit8(x) __builtin_bitreverse8( x)
#define rbit16(x) __builtin_bitreverse16(x)
#define rbit32(x) __builtin_bitreverse32(x)
#define rbit64(x) __builtin_bitreverse64(x)
#else
#if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u)
static ALWAYS_INLINE uint32_t _rbit_(uint32_t x) { uint32_t rc; __asm volatile ("rbit %0, %1" : "=r" (rc) : "r" (x) ); }
#endif
static ALWAYS_INLINE uint8_t rbit8(uint8_t x) {
#if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u)
return _rbit_(x) >> 24;
#elif 0
x = (x & 0xaa) >> 1 | (x & 0x55) << 1;
x = (x & 0xcc) >> 2 | (x & 0x33) << 2;
return x << 4 | x >> 4;
#else
return (x * 0x0202020202ull & 0x010884422010ull) % 1023;
#endif
}
static ALWAYS_INLINE uint16_t rbit16(uint16_t x) {
#if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u)
return _rbit_(x) >> 16;
#else
x = (x & 0xaaaa) >> 1 | (x & 0x5555) << 1;
x = (x & 0xcccc) >> 2 | (x & 0x3333) << 2;
x = (x & 0xf0f0) >> 4 | (x & 0x0f0f) << 4;
return x << 8 | x >> 8;
#endif
}
static ALWAYS_INLINE uint32_t rbit32(uint32_t x) {
#if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u)
return _rbit_(x);
#else
x = ((x & 0xaaaaaaaa) >> 1 | (x & 0x55555555) << 1);
x = ((x & 0xcccccccc) >> 2 | (x & 0x33333333) << 2);
x = ((x & 0xf0f0f0f0) >> 4 | (x & 0x0f0f0f0f) << 4);
x = ((x & 0xff00ff00) >> 8 | (x & 0x00ff00ff) << 8);
return x << 16 | x >> 16;
#endif
}
static ALWAYS_INLINE uint64_t rbit64(uint64_t x) {
#if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u)
return (uint64_t)_rbit_(x) << 32 | _rbit_(x >> 32);
#else
x = (x & 0xaaaaaaaaaaaaaaaa) >> 1 | (x & 0x5555555555555555) << 1;
x = (x & 0xcccccccccccccccc) >> 2 | (x & 0x3333333333333333) << 2;
x = (x & 0xf0f0f0f0f0f0f0f0) >> 4 | (x & 0x0f0f0f0f0f0f0f0f) << 4;
x = (x & 0xff00ff00ff00ff00) >> 8 | (x & 0x00ff00ff00ff00ff) << 8;
x = (x & 0xffff0000ffff0000) >> 16 | (x & 0x0000ffff0000ffff) << 16;
return x << 32 | x >> 32;
#endif
}
#endif
#if defined(__SSSE3__) || defined(__ARM_NEON)
static ALWAYS_INLINE __m128i mm_rbit_epi16(__m128i v) { return mm_rbit_epi8(mm_rev_epi16(v)); }
static ALWAYS_INLINE __m128i mm_rbit_epi32(__m128i v) { return mm_rbit_epi8(mm_rev_epi32(v)); }
static ALWAYS_INLINE __m128i mm_rbit_epi64(__m128i v) { return mm_rbit_epi8(mm_rev_epi64(v)); }
//static ALWAYS_INLINE __m128i mm_rbit_si128(__m128i v) { return mm_rbit_epi8(mm_rev_si128(v)); }
#endif
#ifdef __AVX2__
static ALWAYS_INLINE __m256i mm256_rbit_epi8(__m256i v) {
__m256i fv = _mm256_setr_epi8(0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15, 0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15), cv0f_8 = _mm256_set1_epi8(0xf);
__m256i lv = _mm256_shuffle_epi8(fv,_mm256_and_si256( v, cv0f_8));
__m256i hv = _mm256_shuffle_epi8(fv,_mm256_and_si256(_mm256_srli_epi64(v, 4), cv0f_8));
return _mm256_or_si256(_mm256_slli_epi64(lv,4), hv);
}
static ALWAYS_INLINE __m256i mm256_rev_epi16(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14, 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14)); }
static ALWAYS_INLINE __m256i mm256_rev_epi32(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 3, 2, 1, 0, 7, 6, 5, 4, 11,10, 9, 8,15,14,13,12, 3, 2, 1, 0, 7, 6, 5, 4, 11,10, 9, 8,15,14,13,12)); }
static ALWAYS_INLINE __m256i mm256_rev_epi64(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8)); }
static ALWAYS_INLINE __m256i mm256_rev_si128(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8(15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)); }
static ALWAYS_INLINE __m256i mm256_rbit_epi16(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi16(v)); }
static ALWAYS_INLINE __m256i mm256_rbit_epi32(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi32(v)); }
static ALWAYS_INLINE __m256i mm256_rbit_epi64(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi64(v)); }
static ALWAYS_INLINE __m256i mm256_rbit_si128(__m256i v) { return mm256_rbit_epi8(mm256_rev_si128(v)); }
#endif
#endif
//---------- max. bit length + transform for sorted/unsorted arrays, delta,delta 1, delta > 1, zigzag, zigzag of delta, xor, FOR,----------------
#ifdef __cplusplus
extern "C" {
#endif
//------ ORed array, for maximum bit length of the elements in the unsorted integer array ---------------------
uint8_t bit8( uint8_t *in, unsigned n, uint8_t *px);
uint16_t bit16(uint16_t *in, unsigned n, uint16_t *px);
uint32_t bit32(uint32_t *in, unsigned n, uint32_t *px);
uint64_t bit64(uint64_t *in, unsigned n, uint64_t *px);
//-------------- delta = 0: Sorted integer array w/ mindelta = 0 ----------------------------------------------
//-- ORed array, maximum bit length of the non decreasing integer array. out[i] = in[i] - in[i-1]
uint8_t bitd8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitd16(uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitd32(uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitd64(uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//-- in-place reverse delta 0
void bitddec8( uint8_t *p, unsigned n, uint8_t start); // non decreasing (out[i] = in[i] - in[i-1])
void bitddec16( uint16_t *p, unsigned n, uint16_t start);
void bitddec32( uint32_t *p, unsigned n, uint32_t start);
void bitddec64( uint64_t *p, unsigned n, uint64_t start);
//-- vectorized fast delta4 one: out[0] = in[4]-in[0], out[1]=in[5]-in[1], out[2]=in[6]-in[2], out[3]=in[7]-in[3],...
uint16_t bits128v16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bits128v32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
//------------- delta = 1: Sorted integer array w/ mindelta = 1 ---------------------------------------------
//-- get delta maximum bit length of the non strictly decreasing integer array. out[i] = in[i] - in[i-1] - 1
uint8_t bitd18( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitd116(uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitd132(uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitd164(uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//-- in-place reverse delta one
void bitd1dec8( uint8_t *p, unsigned n, uint8_t start); // non strictly decreasing (out[i] = in[i] - in[i-1] - 1)
void bitd1dec16( uint16_t *p, unsigned n, uint16_t start);
void bitd1dec32( uint32_t *p, unsigned n, uint32_t start);
void bitd1dec64( uint64_t *p, unsigned n, uint64_t start);
//------------- delta > 1: Sorted integer array w/ mindelta > 1 ---------------------------------------------
//-- ORed array, for max. bit length get min. delta ()
uint8_t bitdi8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitdi16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitdi32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitdi64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//-- transform sorted integer array to delta array: out[i] = in[i] - in[i-1] - mindelta
uint8_t bitdienc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start, uint8_t mindelta);
uint16_t bitdienc16(uint16_t *in, unsigned n, uint16_t *out, uint16_t start, uint16_t mindelta);
uint32_t bitdienc32(uint32_t *in, unsigned n, uint32_t *out, uint32_t start, uint32_t mindelta);
uint64_t bitdienc64(uint64_t *in, unsigned n, uint64_t *out, uint64_t start, uint64_t mindelta);
//-- in-place reverse delta
void bitdidec8( uint8_t *in, unsigned n, uint8_t start, uint8_t mindelta);
void bitdidec16(uint16_t *in, unsigned n, uint16_t start, uint16_t mindelta);
void bitdidec32(uint32_t *in, unsigned n, uint32_t start, uint32_t mindelta);
void bitdidec64(uint64_t *in, unsigned n, uint64_t start, uint64_t mindelta);
//------------- FOR : array bit length: ---------------------------------------------------------------------
//------ ORed array, for max. bit length of the non decreasing integer array. out[i] = in[i] - start
uint8_t bitf8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitf16(uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitf32(uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitf64(uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//------ ORed array, for max. bit length of the non strictly decreasing integer array out[i] = in[i] - 1 - start
uint8_t bitf18( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitf116(uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitf132(uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitf164(uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//------ ORed array, for max. bit length for usorted array
uint8_t bitfm8( uint8_t *in, unsigned n, uint8_t *px, uint8_t *pmin); // unsorted
uint16_t bitfm16(uint16_t *in, unsigned n, uint16_t *px, uint16_t *pmin);
uint32_t bitfm32(uint32_t *in, unsigned n, uint32_t *px, uint32_t *pmin);
uint64_t bitfm64(uint64_t *in, unsigned n, uint64_t *px, uint64_t *pmin);
//------------- Zigzag encoding for unsorted integer lists: out[i] = in[i] - in[i-1] ------------------------
//-- ORed array, to get maximum zigzag bit length integer array
uint8_t bitz8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitz16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitz32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitz64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//-- Zigzag transform
uint8_t bitzenc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start, uint8_t mindelta);
uint16_t bitzenc16(uint16_t *in, unsigned n, uint16_t *out, uint16_t start, uint16_t mindelta);
uint32_t bitzenc32(uint32_t *in, unsigned n, uint32_t *out, uint32_t start, uint32_t mindelta);
uint64_t bitzenc64(uint64_t *in, unsigned n, uint64_t *out, uint64_t start, uint64_t mindelta);
//-- in-place zigzag reverse transform
void bitzdec8( uint8_t *in, unsigned n, uint8_t start);
void bitzdec16( uint16_t *in, unsigned n, uint16_t start);
void bitzdec32( uint32_t *in, unsigned n, uint32_t start);
void bitzdec64( uint64_t *in, unsigned n, uint64_t start);
//------------- Zigzag of zigzag/delta : unsorted/sorted integer array ----------------------------------------------------
//-- get delta maximum bit length of the non strictly decreasing integer array. out[i] = in[i] - in[i-1] - 1
uint8_t bitzz8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitzz16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitzz32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitzz64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
uint8_t bitzzenc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start, uint8_t mindelta);
uint16_t bitzzenc16(uint16_t *in, unsigned n, uint16_t *out, uint16_t start, uint16_t mindelta);
uint32_t bitzzenc32(uint32_t *in, unsigned n, uint32_t *out, uint32_t start, uint32_t mindelta);
uint64_t bitzzenc64(uint64_t *in, unsigned n, uint64_t *out, uint64_t start, uint64_t mindelta);
//-- in-place reverse zigzag of delta (encoded w/ bitdiencNN and parameter mindelta = 1)
void bitzzdec8( uint8_t *in, unsigned n, uint8_t start); // non strictly decreasing (out[i] = in[i] - in[i-1] - 1)
void bitzzdec16( uint16_t *in, unsigned n, uint16_t start);
void bitzzdec32( uint32_t *in, unsigned n, uint32_t start);
void bitzzdec64( uint64_t *in, unsigned n, uint64_t start);
//------------- XOR encoding for unsorted integer lists: out[i] = in[i] - in[i-1] -------------
//-- ORed array, to get maximum zigzag bit length integer array
uint8_t bitx8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start);
uint16_t bitx16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start);
uint32_t bitx32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start);
uint64_t bitx64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start);
//-- XOR transform
uint8_t bitxenc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start);
uint16_t bitxenc16( uint16_t *in, unsigned n, uint16_t *out, uint16_t start);
uint32_t bitxenc32( uint32_t *in, unsigned n, uint32_t *out, uint32_t start);
uint64_t bitxenc64( uint64_t *in, unsigned n, uint64_t *out, uint64_t start);
//-- XOR in-place reverse transform
void bitxdec8( uint8_t *p, unsigned n, uint8_t start);
void bitxdec16( uint16_t *p, unsigned n, uint16_t start);
void bitxdec32( uint32_t *p, unsigned n, uint32_t start);
void bitxdec64( uint64_t *p, unsigned n, uint64_t start);
//------- Lossy floating point transform: pad the trailing mantissa bits with zeros according to the error e (ex. e=0.00001)
#ifdef USE_FLOAT16
void fppad16(_Float16 *in, size_t n, _Float16 *out, float e);
#endif
void fppad32(float *in, size_t n, float *out, float e);
void fppad64(double *in, size_t n, double *out, double e);
#ifdef __cplusplus
}
#endif
//---- Floating point to Integer decomposition ---------------------------------
// seeeeeeee21098765432109876543210 (s:sign, e:exponent, 0-9:mantissa)
#ifdef BITUTIL_IN
#define MANTF32 23
#define MANTF64 52
#define BITFENC(_u_, _sgn_, _expo_, _mant_, _mantbits_, _one_) _sgn_ = _u_ >> (sizeof(_u_)*8-1); _expo_ = ((_u_ >> (_mantbits_)) & ( (_one_<<(sizeof(_u_)*8 - 1 - _mantbits_)) -1)); _mant_ = _u_ & ((_one_<<_mantbits_)-1);
#define BITFDEC( _sgn_, _expo_, _mant_, _u_, _mantbits_) _u_ = (_sgn_) << (sizeof(_u_)*8-1) | (_expo_) << _mantbits_ | (_mant_)
#endif