[improvement](hll) Optimize Hyperloglog (#8829)

In meituan, pr #6625 was revert due to the oom probleam.
currently, we are trying to modify the old hyperloglog, based on pr #8555, we did some works.
via some test, we find it better than old hll, and better than apache:master hll.

Changes summary:

- use SIMD max tp speed up heavy function _merge_registers
- use phmap::flat_hash_set rather than std::set
- replace std::max
- other small changes
This commit is contained in:
zbtzbtzbt
2022-04-08 09:06:08 +08:00
committed by GitHub
parent b88bf73ca7
commit 0b98d78664
3 changed files with 75 additions and 192 deletions

View File

@ -1108,11 +1108,9 @@ void AggregateFunctions::hll_merge(FunctionContext* ctx, const StringVal& src, S
DCHECK(!src.is_null);
DCHECK_EQ(dst->len, std::pow(2, HLL_COLUMN_PRECISION));
DCHECK_EQ(src.len, std::pow(2, HLL_COLUMN_PRECISION));
auto dp = dst->ptr;
auto sp = src.ptr;
for (int i = 0; i < src.len; ++i) {
dp[i] = (dp[i] < sp[i] ? sp[i] : dp[i]);
dst->ptr[i] = (dst->ptr[i] < src.ptr[i] ? src.ptr[i] : dst->ptr[i]);
}
}

View File

@ -43,15 +43,13 @@ HyperLogLog::HyperLogLog(const Slice& src) {
void HyperLogLog::_convert_explicit_to_register() {
DCHECK(_type == HLL_DATA_EXPLICIT)
<< "_type(" << _type << ") should be explicit(" << HLL_DATA_EXPLICIT << ")";
_registers = new uint8_t[HLL_REGISTERS_COUNT]();
for (uint32_t i = 0; i < _explicit_data_num; ++i) {
_update_registers(_explicit_data[i]);
_registers = new uint8_t[HLL_REGISTERS_COUNT];
memset(_registers, 0, HLL_REGISTERS_COUNT);
for (auto value : _hash_set) {
_update_registers(value);
}
delete [] _explicit_data;
_explicit_data = nullptr;
_explicit_data_num = 0;
// clear _hash_set
phmap::flat_hash_set<uint64_t>().swap(_hash_set);
}
// Change HLL_DATA_EXPLICIT to HLL_DATA_FULL directly, because HLL_DATA_SPARSE
@ -59,14 +57,12 @@ void HyperLogLog::_convert_explicit_to_register() {
void HyperLogLog::update(uint64_t hash_value) {
switch (_type) {
case HLL_DATA_EMPTY:
_explicit_data = new uint64_t[HLL_EXPLICIT_INT64_NUM_DOUBLE];
_explicit_data[0] = hash_value;
_explicit_data_num = 1;
_hash_set.insert(hash_value);
_type = HLL_DATA_EXPLICIT;
break;
case HLL_DATA_EXPLICIT:
if (_explicit_data_num < HLL_EXPLICIT_INT64_NUM) {
_explicit_data_insert(hash_value);
if (_hash_set.size() < HLL_EXPLICIT_INT64_NUM) {
_hash_set.insert(hash_value);
break;
}
_convert_explicit_to_register();
@ -90,10 +86,7 @@ void HyperLogLog::merge(const HyperLogLog& other) {
_type = other._type;
switch (other._type) {
case HLL_DATA_EXPLICIT:
_explicit_data_num = other._explicit_data_num;
_explicit_data = new uint64_t[HLL_EXPLICIT_INT64_NUM_DOUBLE];
memcpy(_explicit_data, other._explicit_data,
sizeof(*_explicit_data) * _explicit_data_num);
_hash_set = other._hash_set;
break;
case HLL_DATA_SPARSE:
case HLL_DATA_FULL:
@ -110,47 +103,8 @@ void HyperLogLog::merge(const HyperLogLog& other) {
case HLL_DATA_EXPLICIT: {
// Merge other's explicit values first, then check if the number is exceed
// HLL_EXPLICIT_INT64_NUM. This is OK because the max value is 2 * 160.
if (other._explicit_data_num > HLL_EXPLICIT_INT64_NUM / 2) { //merge
uint64_t explicit_data[HLL_EXPLICIT_INT64_NUM * 2];
memcpy(explicit_data, _explicit_data, sizeof(*_explicit_data) * _explicit_data_num);
uint32_t explicit_data_num = _explicit_data_num;
_explicit_data_num = 0;
// merge _explicit_data and other's _explicit_data to _explicit_data
uint32_t i = 0, j = 0, k = 0;
while (i < explicit_data_num || j < other._explicit_data_num) {
if (i == explicit_data_num) {
uint32_t n = other._explicit_data_num - j;
memcpy(_explicit_data + k, other._explicit_data + j,
n * sizeof(*_explicit_data));
k += n;
break;
} else if (j == other._explicit_data_num) {
uint32_t n = explicit_data_num - i;
memcpy(_explicit_data + k, explicit_data + i, n * sizeof(*_explicit_data));
k += n;
break;
} else {
if (explicit_data[i] < other._explicit_data[j]) {
_explicit_data[k++] = explicit_data[i++];
} else if (explicit_data[i] > other._explicit_data[j]) {
_explicit_data[k++] = other._explicit_data[j++];
} else {
_explicit_data[k++] = explicit_data[i++];
j++;
}
}
}
_explicit_data_num = k;
} else { //insert one by one
int32_t n = other._explicit_data_num;
const uint64_t* data = other._explicit_data;
for (int32_t i = 0; i < n; ++i) {
_explicit_data_insert(data[i]);
}
}
if (_explicit_data_num > HLL_EXPLICIT_INT64_NUM) {
_hash_set.insert(other._hash_set.begin(), other._hash_set.end());
if (_hash_set.size() > HLL_EXPLICIT_INT64_NUM) {
_convert_explicit_to_register();
_type = HLL_DATA_FULL;
}
@ -170,8 +124,8 @@ void HyperLogLog::merge(const HyperLogLog& other) {
case HLL_DATA_FULL: {
switch (other._type) {
case HLL_DATA_EXPLICIT:
for (int32_t i = 0; i < other._explicit_data_num; ++i) {
_update_registers(other._explicit_data[i]);
for (auto hash_value : other._hash_set) {
_update_registers(hash_value);
}
break;
case HLL_DATA_SPARSE:
@ -192,7 +146,7 @@ size_t HyperLogLog::max_serialized_size() const {
default:
return 1;
case HLL_DATA_EXPLICIT:
return 2 + _explicit_data_num * 8;
return 2 + _hash_set.size() * 8;
case HLL_DATA_SPARSE:
case HLL_DATA_FULL:
return 1 + HLL_REGISTERS_COUNT;
@ -201,32 +155,24 @@ size_t HyperLogLog::max_serialized_size() const {
size_t HyperLogLog::serialize(uint8_t* dst) const {
uint8_t* ptr = dst;
switch (_type) {
case HLL_DATA_EMPTY:
default: {
// When the _type is unknown, which may not happen, we encode it as
// Empty HyperLogLog object.
*ptr++ = HLL_DATA_EMPTY;
break;
}
case HLL_DATA_EXPLICIT: {
DCHECK(_explicit_data_num < HLL_EXPLICIT_INT64_NUM)
<< "Number of explicit elements(" << _explicit_data_num
DCHECK(_hash_set.size() <= HLL_EXPLICIT_INT64_NUM)
<< "Number of explicit elements(" << _hash_set.size()
<< ") should be less or equal than " << HLL_EXPLICIT_INT64_NUM;
*ptr++ = _type;
*ptr++ = (uint8_t)_explicit_data_num;
#if __BYTE_ORDER == __LITTLE_ENDIAN
memcpy(ptr, _explicit_data, _explicit_data_num * sizeof(*_explicit_data));
ptr += _explicit_data_num * sizeof(*_explicit_data);
#else
for (int32_t i = 0; i < _explicit_data_num; ++i) {
*(uint64_t*)ptr = (uint64_t)gbswap_64(_explicit_data[i]);
*ptr++ = (uint8_t)_hash_set.size();
for (auto hash_value : _hash_set) {
encode_fixed64_le(ptr, hash_value);
ptr += 8;
}
#endif
break;
}
case HLL_DATA_SPARSE:
@ -249,39 +195,15 @@ size_t HyperLogLog::serialize(uint8_t* dst) const {
encode_fixed32_le(ptr, num_non_zero_registers);
ptr += 4;
for (uint32_t i = 0; i < HLL_REGISTERS_COUNT;) {
if (*(uint32_t*)(&_registers[i]) == 0) {
i += 4;
for (uint32_t i = 0; i < HLL_REGISTERS_COUNT; ++i) {
if (_registers[i] == 0) {
continue;
}
if (UNLIKELY(_registers[i])) {
encode_fixed16_le(ptr, i);
ptr += 2; // 2 bytes: register index
*ptr++ = _registers[i]; // 1 byte: register value
}
++i;
if (UNLIKELY(_registers[i])) {
encode_fixed16_le(ptr, i);
ptr += 2; // 2 bytes: register index
*ptr++ = _registers[i]; // 1 byte: register value
}
++i;
if (UNLIKELY(_registers[i])) {
encode_fixed16_le(ptr, i);
ptr += 2; // 2 bytes: register index
*ptr++ = _registers[i]; // 1 byte: register value
}
++i;
if (UNLIKELY(_registers[i])) {
encode_fixed16_le(ptr, i);
ptr += 2; // 2 bytes: register index
*ptr++ = _registers[i]; // 1 byte: register value
}
++i;
// 2 bytes: register index
// 1 byte: register value
encode_fixed16_le(ptr, i);
ptr += 2;
*ptr++ = _registers[i];
}
}
break;
@ -355,24 +277,23 @@ bool HyperLogLog::deserialize(const Slice& slice) {
// 2: number of explicit values
// make sure that num_explicit is positive
uint8_t num_explicits = *ptr++;
_explicit_data = new uint64_t[HLL_EXPLICIT_INT64_NUM_DOUBLE];
// 3+: 8 bytes hash value
for (int i = 0; i < num_explicits; ++i) {
_explicit_data_insert(decode_fixed64_le(ptr));
_hash_set.insert(decode_fixed64_le(ptr));
ptr += 8;
}
break;
}
case HLL_DATA_SPARSE: {
_registers = new uint8_t[HLL_REGISTERS_COUNT]();
_registers = new uint8_t[HLL_REGISTERS_COUNT];
memset(_registers, 0, HLL_REGISTERS_COUNT);
// 2-5(4 byte): number of registers
uint32_t num_registers = decode_fixed32_le(ptr);
uint16_t register_idx = 0;
ptr += 4;
for (uint32_t i = 0; i < num_registers; ++i) {
// 2 bytes: register index
// 1 byte: register value
register_idx = decode_fixed16_le(ptr);
uint16_t register_idx = decode_fixed16_le(ptr);
ptr += 2;
_registers[register_idx] = *ptr++;
}
@ -397,7 +318,7 @@ int64_t HyperLogLog::estimate_cardinality() const {
return 0;
}
if (_type == HLL_DATA_EXPLICIT) {
return _explicit_data_num;
return _hash_set.size();
}
const int num_streams = HLL_REGISTERS_COUNT;

View File

@ -24,6 +24,11 @@
#include <map>
#include <set>
#include <string>
#include <parallel_hashmap/phmap.h>
#ifdef __x86_64__
#include <immintrin.h>
#endif
#include "gutil/macros.h"
@ -34,7 +39,6 @@ struct Slice;
const static int HLL_COLUMN_PRECISION = 14;
const static int HLL_ZERO_COUNT_BITS = (64 - HLL_COLUMN_PRECISION);
const static int HLL_EXPLICIT_INT64_NUM = 160;
const static int HLL_EXPLICIT_INT64_NUM_DOUBLE = HLL_EXPLICIT_INT64_NUM * 2;
const static int HLL_SPARSE_THRESHOLD = 4096;
const static int HLL_REGISTERS_COUNT = 16 * 1024;
// maximum size in byte of serialized HLL: type(1) + registers (2^14)
@ -83,10 +87,9 @@ class HyperLogLog {
public:
HyperLogLog() = default;
explicit HyperLogLog(uint64_t hash_value) : _type(HLL_DATA_EXPLICIT) {
_explicit_data = new uint64_t[HLL_EXPLICIT_INT64_NUM_DOUBLE];
_explicit_data[0] = hash_value;
_explicit_data_num = 1;
_hash_set.emplace(hash_value);
}
explicit HyperLogLog(const Slice& src);
HyperLogLog(const HyperLogLog& other) {
this->_type = other._type;
@ -94,10 +97,7 @@ public:
case HLL_DATA_EMPTY:
break;
case HLL_DATA_EXPLICIT: {
this->_explicit_data_num = other._explicit_data_num;
_explicit_data = new uint64_t[HLL_EXPLICIT_INT64_NUM_DOUBLE];
memcpy(_explicit_data, other._explicit_data,
sizeof(*_explicit_data) * _explicit_data_num);
this->_hash_set = other._hash_set;
break;
}
case HLL_DATA_SPARSE:
@ -105,10 +105,10 @@ public:
_registers = new uint8_t[HLL_REGISTERS_COUNT];
memcpy(_registers, other._registers, HLL_REGISTERS_COUNT);
break;
}
default:
break;
}
}
}
HyperLogLog(HyperLogLog&& other) {
@ -117,10 +117,7 @@ public:
case HLL_DATA_EMPTY:
break;
case HLL_DATA_EXPLICIT: {
this->_explicit_data_num = other._explicit_data_num;
this->_explicit_data = other._explicit_data;
other._explicit_data_num = 0;
other._explicit_data = nullptr;
this->_hash_set = std::move(other._hash_set);
other._type = HLL_DATA_EMPTY;
break;
}
@ -130,33 +127,25 @@ public:
other._registers = nullptr;
other._type = HLL_DATA_EMPTY;
break;
}
default:
break;
}
}
}
HyperLogLog& operator=(HyperLogLog&& other) {
if (this != &other) {
if (_registers) {
if (_registers != nullptr) {
delete[] _registers;
_registers = nullptr;
}
if (_explicit_data) {
delete[] _explicit_data;
_explicit_data = nullptr;
}
_explicit_data_num = 0;
this->_type = other._type;
switch (other._type) {
case HLL_DATA_EMPTY:
break;
case HLL_DATA_EXPLICIT: {
this->_explicit_data_num = other._explicit_data_num;
this->_explicit_data = other._explicit_data;
other._explicit_data_num = 0;
other._explicit_data = nullptr;
this->_hash_set = std::move(other._hash_set);
other._type = HLL_DATA_EMPTY;
break;
}
@ -166,35 +155,27 @@ public:
other._registers = nullptr;
other._type = HLL_DATA_EMPTY;
break;
}
default:
break;
}
}
}
return *this;
}
HyperLogLog& operator=(const HyperLogLog& other) {
if (this != &other) {
if (_registers) {
if (_registers != nullptr) {
delete[] _registers;
_registers = nullptr;
}
if (_explicit_data) {
delete[] _explicit_data;
_explicit_data = nullptr;
}
_explicit_data_num = 0;
this->_type = other._type;
switch (other._type) {
case HLL_DATA_EMPTY:
break;
case HLL_DATA_EXPLICIT: {
this->_explicit_data_num = other._explicit_data_num;
_explicit_data = new uint64_t[HLL_EXPLICIT_INT64_NUM_DOUBLE];
memcpy(_explicit_data, other._explicit_data,
sizeof(*_explicit_data) * _explicit_data_num);
this->_hash_set = other._hash_set;
break;
}
case HLL_DATA_SPARSE:
@ -202,25 +183,20 @@ public:
_registers = new uint8_t[HLL_REGISTERS_COUNT];
memcpy(_registers, other._registers, HLL_REGISTERS_COUNT);
break;
}
default:
break;
}
}
}
return *this;
}
explicit HyperLogLog(const Slice& src);
~HyperLogLog() { clear(); }
void clear() {
_type = HLL_DATA_EMPTY;
_hash_set.clear();
delete[] _registers;
_registers = nullptr;
delete[] _explicit_data;
_explicit_data = nullptr;
_explicit_data_num = 0;
}
typedef uint8_t SetTypeValueType;
@ -239,8 +215,10 @@ public:
size_t memory_consumed() const {
size_t size = sizeof(*this);
if (_explicit_data) size += HLL_EXPLICIT_INT64_NUM_DOUBLE;
if (_registers) size += HLL_REGISTERS_COUNT;
if (_type == HLL_DATA_EXPLICIT)
size += _hash_set.size() * sizeof(uint64_t);
else if (_type == HLL_DATA_SPARSE || _type == HLL_DATA_FULL)
size += HLL_REGISTERS_COUNT;
return size;
}
@ -277,7 +255,7 @@ public:
case HLL_DATA_SPARSE:
case HLL_DATA_FULL: {
std::string str {"hash set size: "};
str.append(std::to_string((size_t)_explicit_data_num));
str.append(std::to_string(_hash_set.size()));
str.append("\ncardinality:\t");
str.append(std::to_string(estimate_cardinality()));
str.append("\ntype:\t");
@ -291,9 +269,7 @@ public:
private:
HllDataType _type = HLL_DATA_EMPTY;
uint32_t _explicit_data_num = 0;
uint64_t* _explicit_data = nullptr;
phmap::flat_hash_set<uint64_t> _hash_set;
// This field is much space consuming(HLL_REGISTERS_COUNT), we create
// it only when it is really needed.
@ -312,40 +288,28 @@ private:
// make sure max first_one_bit is HLL_ZERO_COUNT_BITS + 1
hash_value |= ((uint64_t)1 << HLL_ZERO_COUNT_BITS);
uint8_t first_one_bit = __builtin_ctzl(hash_value) + 1;
_registers[idx] = _registers[idx] > first_one_bit ? _registers[idx] : first_one_bit;
_registers[idx] = (_registers[idx] < first_one_bit ? first_one_bit : _registers[idx]);
}
// absorb other registers into this registers
void _merge_registers(const uint8_t* other) {
void _merge_registers(const uint8_t* other_registers) {
#ifdef __AVX2__
int loop = HLL_REGISTERS_COUNT / 32; // 32 = 256/8
uint8_t* dst = _registers;
const uint8_t* src = other_registers;
for (int i = 0; i < loop; i++) {
__m256i xa = _mm256_loadu_si256((const __m256i*)dst);
__m256i xb = _mm256_loadu_si256((const __m256i*)src);
_mm256_storeu_si256((__m256i*)dst, _mm256_max_epu8(xa, xb));
src += 32;
dst += 32;
}
#else
for (int i = 0; i < HLL_REGISTERS_COUNT; ++i) {
_registers[i] = _registers[i] < other[i] ? other[i] : _registers[i];
_registers[i] =
(_registers[i] < other_registers[i] ? other_registers[i] : _registers[i]);
}
}
bool _explicit_data_insert(uint64_t data) {
//find insert pos
int32_t i = (int32_t)_explicit_data_num - 1;
while (i >= 0) {
if (_explicit_data[i] == data) {
return false;
} else if (_explicit_data[i] < data) {
break;
} else {
--i;
}
}
++i; //now, i is the insert position
size_t n = (_explicit_data_num - i) * sizeof(*_explicit_data);
if (n) {
memmove(_explicit_data + i + 1, _explicit_data + i, n);
}
//insert data
_explicit_data[i] = data;
_explicit_data_num++;
return true;
#endif
}
};