[Refactor](spark load) remove parquet scanner (#19251)

This commit is contained in:
WenYao
2023-05-18 19:19:13 +08:00
committed by GitHub
parent ef0657c072
commit 481e9aebdb
20 changed files with 599 additions and 1892 deletions

View File

@ -22,9 +22,6 @@ set(LIBRARY_OUTPUT_PATH "${BUILD_DIR}/src/exec")
set(EXECUTABLE_OUTPUT_PATH "${BUILD_DIR}/src/exec")
set(EXEC_FILES
arrow/arrow_reader.cpp
arrow/parquet_reader.cpp
base_scanner.cpp
data_sink.cpp
decompressor.cpp
exec_node.cpp

View File

@ -1,262 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/arrow/arrow_reader.h"
#include <arrow/record_batch.h>
#include <algorithm>
// IWYU pragma: no_include <bits/chrono.h>
#include <chrono> // IWYU pragma: keep
#include <ostream>
#include <utility>
// IWYU pragma: no_include <opentelemetry/common/threadlocal.h>
#include "common/compiler_util.h" // IWYU pragma: keep
#include "common/logging.h"
#include "io/fs/file_reader.h"
#include "runtime/descriptors.h"
#include "runtime/runtime_state.h"
#include "util/slice.h"
#include "util/string_util.h"
#include "vec/core/block.h"
#include "vec/core/column_with_type_and_name.h"
#include "vec/utils/arrow_column_to_doris_column.h"
namespace doris {
ArrowReaderWrap::ArrowReaderWrap(RuntimeState* state,
const std::vector<SlotDescriptor*>& file_slot_descs,
io::FileReaderSPtr file_reader, int32_t num_of_columns_from_file,
bool case_sensitive)
: _state(state),
_file_slot_descs(file_slot_descs),
_num_of_columns_from_file(num_of_columns_from_file),
_case_sensitive(case_sensitive) {
_arrow_file = std::shared_ptr<ArrowFile>(new ArrowFile(file_reader));
_rb_reader = nullptr;
_total_groups = 0;
_current_group = 0;
_statistics = std::make_shared<Statistics>();
}
ArrowReaderWrap::~ArrowReaderWrap() {
close();
_closed = true;
_queue_writer_cond.notify_one();
if (_thread.joinable()) {
_thread.join();
}
}
void ArrowReaderWrap::close() {
arrow::Status st = _arrow_file->Close();
if (!st.ok()) {
LOG(WARNING) << "close file error: " << st.ToString();
}
}
Status ArrowReaderWrap::column_indices() {
_include_column_ids.clear();
_include_cols.clear();
for (auto& slot_desc : _file_slot_descs) {
// Get the Column Reader for the boolean column
auto iter = _map_column.find(slot_desc->col_name());
if (iter != _map_column.end()) {
_include_column_ids.emplace_back(iter->second);
_include_cols.push_back(slot_desc->col_name());
} else {
_missing_cols.push_back(slot_desc->col_name());
}
}
return Status::OK();
}
int ArrowReaderWrap::get_column_index(std::string column_name) {
std::string real_column_name = _case_sensitive ? column_name : to_lower(column_name);
auto iter = _map_column.find(real_column_name);
if (iter != _map_column.end()) {
return iter->second;
} else {
std::stringstream str_error;
str_error << "Invalid Column Name:" << real_column_name;
LOG(WARNING) << str_error.str();
return -1;
}
}
Status ArrowReaderWrap::get_next_block(vectorized::Block* block, size_t* read_row, bool* eof) {
size_t rows = 0;
bool tmp_eof = false;
do {
if (_batch == nullptr || _arrow_batch_cur_idx >= _batch->num_rows()) {
RETURN_IF_ERROR(next_batch(&_batch, &tmp_eof));
// We need to make sure the eof is set to true iff block is empty.
if (tmp_eof) {
*eof = (rows == 0);
break;
}
}
size_t num_elements = std::min<size_t>((_state->batch_size() - block->rows()),
(_batch->num_rows() - _arrow_batch_cur_idx));
for (auto i = 0; i < _file_slot_descs.size(); ++i) {
SlotDescriptor* slot_desc = _file_slot_descs[i];
if (slot_desc == nullptr) {
continue;
}
std::string real_column_name =
is_case_sensitive() ? slot_desc->col_name() : slot_desc->col_name_lower_case();
auto* array = _batch->GetColumnByName(real_column_name).get();
auto& column_with_type_and_name = block->get_by_name(slot_desc->col_name());
RETURN_IF_ERROR(arrow_column_to_doris_column(
array, _arrow_batch_cur_idx, column_with_type_and_name.column,
column_with_type_and_name.type, num_elements, _state->timezone_obj()));
}
rows += num_elements;
_arrow_batch_cur_idx += num_elements;
} while (!tmp_eof && rows < _state->batch_size());
*read_row = rows;
return Status::OK();
}
Status ArrowReaderWrap::next_batch(std::shared_ptr<arrow::RecordBatch>* batch, bool* eof) {
std::unique_lock<std::mutex> lock(_mtx);
while (!_closed && _queue.empty()) {
if (_batch_eof) {
_include_column_ids.clear();
_include_cols.clear();
*eof = true;
return Status::OK();
}
_queue_reader_cond.wait_for(lock, std::chrono::seconds(1));
}
if (UNLIKELY(_closed)) {
return Status::InternalError(_status.message());
}
*batch = _queue.front();
_queue.pop_front();
_queue_writer_cond.notify_one();
_arrow_batch_cur_idx = 0;
return Status::OK();
}
void ArrowReaderWrap::prefetch_batch() {
auto insert_batch = [this](const auto& batch) {
std::unique_lock<std::mutex> lock(_mtx);
while (!_closed && _queue.size() == _max_queue_size) {
_queue_writer_cond.wait_for(lock, std::chrono::seconds(1));
}
if (UNLIKELY(_closed)) {
return;
}
_queue.push_back(batch);
_queue_reader_cond.notify_one();
};
int current_group = _current_group;
int total_groups = _total_groups;
while (true) {
if (_closed || current_group >= total_groups) {
_batch_eof = true;
_queue_reader_cond.notify_one();
return;
}
if (filter_row_group(current_group)) {
current_group++;
continue;
}
arrow::RecordBatchVector batches;
read_batches(batches, current_group);
if (!_status.ok()) {
_closed = true;
return;
}
std::for_each(batches.begin(), batches.end(), insert_batch);
current_group++;
}
}
ArrowFile::ArrowFile(io::FileReaderSPtr file_reader) : _file_reader(file_reader) {}
ArrowFile::~ArrowFile() {
arrow::Status st = Close();
if (!st.ok()) {
LOG(WARNING) << "close file error: " << st.ToString();
}
}
arrow::Status ArrowFile::Close() {
return arrow::Status::OK();
}
bool ArrowFile::closed() const {
return _file_reader->closed();
}
arrow::Result<int64_t> ArrowFile::Read(int64_t nbytes, void* buffer) {
return ReadAt(_pos, nbytes, buffer);
}
arrow::Result<int64_t> ArrowFile::ReadAt(int64_t position, int64_t nbytes, void* out) {
int64_t bytes_read = 0;
_pos = position;
while (bytes_read < nbytes) {
size_t reads = 0;
Slice file_slice((uint8_t*)out, nbytes);
Status result = _file_reader->read_at(_pos, file_slice, &reads);
if (!result.ok()) {
return arrow::Status::IOError("Readat failed.");
}
if (reads == 0) {
break;
}
bytes_read += reads; // total read bytes
_pos += reads;
out = (char*)out + reads;
}
return bytes_read;
}
arrow::Result<int64_t> ArrowFile::GetSize() {
return _file_reader->size();
}
arrow::Status ArrowFile::Seek(int64_t position) {
_pos = position;
// NOTE: Only readat operation is used, so _file seek is not called here.
return arrow::Status::OK();
}
arrow::Result<int64_t> ArrowFile::Tell() const {
return _pos;
}
arrow::Result<std::shared_ptr<arrow::Buffer>> ArrowFile::Read(int64_t nbytes) {
auto buffer = arrow::AllocateBuffer(nbytes, arrow::default_memory_pool());
ARROW_RETURN_NOT_OK(buffer);
std::shared_ptr<arrow::Buffer> read_buf = std::move(buffer.ValueOrDie());
auto bytes_read = ReadAt(_pos, nbytes, read_buf->mutable_data());
ARROW_RETURN_NOT_OK(bytes_read);
// If bytes_read is equal with read_buf's capacity, we just assign
if (bytes_read.ValueOrDie() == nbytes) {
return read_buf;
} else {
return arrow::SliceBuffer(read_buf, 0, bytes_read.ValueOrDie());
}
}
} // namespace doris

View File

@ -1,144 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <arrow/io/interfaces.h>
#include <arrow/result.h>
#include <parquet/platform.h>
#include <stddef.h>
#include <stdint.h>
#include <atomic>
#include <condition_variable>
#include <list>
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <vector>
#include "common/config.h"
#include "common/status.h"
#include "io/fs/file_reader_writer_fwd.h"
#include "vec/exec/format/generic_reader.h"
namespace arrow {
class RecordBatch;
class RecordBatchReader;
} // namespace arrow
namespace doris {
class RuntimeState;
class SlotDescriptor;
class TupleDescriptor;
namespace vectorized {
class Block;
} // namespace vectorized
struct Statistics {
int32_t filtered_row_groups = 0;
int32_t total_groups = 0;
int64_t filtered_rows = 0;
int64_t total_rows = 0;
int64_t filtered_total_bytes = 0;
int64_t total_bytes = 0;
};
class ArrowFile : public arrow::io::RandomAccessFile {
public:
ArrowFile(io::FileReaderSPtr file_reader);
virtual ~ArrowFile();
arrow::Result<int64_t> Read(int64_t nbytes, void* buffer) override;
arrow::Result<int64_t> ReadAt(int64_t position, int64_t nbytes, void* out) override;
arrow::Result<int64_t> GetSize() override;
arrow::Status Seek(int64_t position) override;
arrow::Result<std::shared_ptr<arrow::Buffer>> Read(int64_t nbytes) override;
arrow::Result<int64_t> Tell() const override;
arrow::Status Close() override;
bool closed() const override;
private:
io::FileReaderSPtr _file_reader;
size_t _pos = 0;
};
// base of arrow reader
class ArrowReaderWrap : public vectorized::GenericReader {
public:
ArrowReaderWrap(RuntimeState* state, const std::vector<SlotDescriptor*>& file_slot_descs,
io::FileReaderSPtr file_reader, int32_t num_of_columns_from_file,
bool caseSensitive);
virtual ~ArrowReaderWrap();
virtual Status init_reader(const TupleDescriptor* tuple_desc, const std::string& timezone) = 0;
// for vec
Status get_next_block(vectorized::Block* block, size_t* read_row, bool* eof) override;
// This method should be deprecated once the old scanner is removed.
// And user should use "get_next_block" instead.
Status next_batch(std::shared_ptr<arrow::RecordBatch>* batch, bool* eof);
std::shared_ptr<Statistics>& statistics() { return _statistics; }
void close();
virtual Status size(int64_t* size) { return Status::NotSupported("Not Implemented size"); }
int get_column_index(std::string column_name);
void prefetch_batch();
bool is_case_sensitive() { return _case_sensitive; }
protected:
virtual Status column_indices();
virtual void read_batches(arrow::RecordBatchVector& batches, int current_group) = 0;
virtual bool filter_row_group(int current_group) = 0;
protected:
RuntimeState* _state;
std::vector<SlotDescriptor*> _file_slot_descs;
const int32_t _num_of_columns_from_file;
std::shared_ptr<ArrowFile> _arrow_file;
std::shared_ptr<::arrow::RecordBatchReader> _rb_reader;
int _total_groups; // num of groups(stripes) of a parquet(orc) file
int _current_group; // current group(stripe)
std::map<std::string, int> _map_column; // column-name <---> column-index
std::vector<int> _include_column_ids; // columns that need to get from file
std::vector<std::string> _include_cols; // columns that need to get from file
std::shared_ptr<Statistics> _statistics;
std::atomic<bool> _closed = false;
std::atomic<bool> _batch_eof = false;
arrow::Status _status;
std::mutex _mtx;
std::condition_variable _queue_reader_cond;
std::condition_variable _queue_writer_cond;
std::list<std::shared_ptr<arrow::RecordBatch>> _queue;
const size_t _max_queue_size = config::parquet_reader_max_buffer_size;
std::thread _thread;
bool _case_sensitive;
// The following fields are only valid when using "get_block()" interface.
std::shared_ptr<arrow::RecordBatch> _batch;
size_t _arrow_batch_cur_idx = 0;
// Save col names which need to be read but does not exist in file
std::vector<std::string> _missing_cols;
};
} // namespace doris

View File

@ -1,211 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/arrow/parquet_reader.h"
#include <arrow/record_batch.h>
#include <arrow/result.h>
#include <arrow/status.h>
#include <arrow/type.h>
#include <parquet/exception.h>
#include <parquet/file_reader.h>
#include <parquet/metadata.h>
#include <parquet/properties.h>
#include <parquet/schema.h>
#include <atomic>
// IWYU pragma: no_include <bits/chrono.h>
#include <chrono> // IWYU pragma: keep
#include <condition_variable>
#include <list>
#include <map>
#include <mutex>
#include <ostream>
#include <thread>
// IWYU pragma: no_include <opentelemetry/common/threadlocal.h>
#include "common/compiler_util.h" // IWYU pragma: keep
#include "common/logging.h"
#include "common/status.h"
#include "util/string_util.h"
namespace doris {
class TupleDescriptor;
// Broker
ParquetReaderWrap::ParquetReaderWrap(RuntimeState* state,
const std::vector<SlotDescriptor*>& file_slot_descs,
io::FileReaderSPtr file_reader,
int32_t num_of_columns_from_file, int64_t range_start_offset,
int64_t range_size, bool case_sensitive)
: ArrowReaderWrap(state, file_slot_descs, file_reader, num_of_columns_from_file,
case_sensitive),
_rows_of_group(0),
_current_line_of_group(0),
_current_line_of_batch(0) {}
Status ParquetReaderWrap::init_reader(const TupleDescriptor* tuple_desc,
const std::string& timezone) {
try {
parquet::ArrowReaderProperties arrow_reader_properties =
parquet::default_arrow_reader_properties();
arrow_reader_properties.set_pre_buffer(true);
arrow_reader_properties.set_use_threads(true);
// Open Parquet file reader
auto reader_builder = parquet::arrow::FileReaderBuilder();
reader_builder.properties(arrow_reader_properties);
auto st = reader_builder.Open(_arrow_file);
if (!st.ok()) {
LOG(WARNING) << "failed to create parquet file reader, errmsg=" << st.ToString();
return Status::InternalError("Failed to create file reader");
}
st = reader_builder.Build(&_reader);
if (!st.ok()) {
LOG(WARNING) << "failed to create parquet file reader, errmsg=" << st.ToString();
return Status::InternalError("Failed to create file reader");
}
_file_metadata = _reader->parquet_reader()->metadata();
// initial members
_total_groups = _file_metadata->num_row_groups();
if (_total_groups == 0) {
return Status::EndOfFile("Empty Parquet File");
}
_rows_of_group = _file_metadata->RowGroup(0)->num_rows();
// map
auto* schemaDescriptor = _file_metadata->schema();
for (int i = 0; i < _file_metadata->num_columns(); ++i) {
std::string schemaName;
// Get the Column Reader for the boolean column
if (schemaDescriptor->Column(i)->max_definition_level() > 1) {
schemaName = schemaDescriptor->Column(i)->path()->ToDotVector()[0];
} else {
schemaName = schemaDescriptor->Column(i)->name();
}
_map_column.emplace(_case_sensitive ? schemaName : to_lower(schemaName), i);
}
_timezone = timezone;
RETURN_IF_ERROR(column_indices());
_thread = std::thread(&ArrowReaderWrap::prefetch_batch, this);
return Status::OK();
} catch (parquet::ParquetException& e) {
std::stringstream str_error;
str_error << "Init parquet reader fail. " << e.what();
LOG(WARNING) << str_error.str();
return Status::InternalError(str_error.str());
}
}
Status ParquetReaderWrap::size(int64_t* size) {
arrow::Result<int64_t> result = _arrow_file->GetSize();
if (result.ok()) {
*size = result.ValueOrDie();
return Status::OK();
} else {
return Status::InternalError(result.status().ToString());
}
}
Status ParquetReaderWrap::read_record_batch(bool* eof) {
if (_current_line_of_group >= _rows_of_group) { // read next row group
VLOG_DEBUG << "read_record_batch, current group id:" << _current_group
<< " current line of group:" << _current_line_of_group
<< " is larger than rows group size:" << _rows_of_group
<< ". start to read next row group";
_current_group++;
if (_current_group >= _total_groups) { // read completed.
_include_column_ids.clear();
*eof = true;
return Status::OK();
}
_current_line_of_group = 0;
_rows_of_group = _file_metadata->RowGroup(_current_group)
->num_rows(); //get rows of the current row group
// read batch
RETURN_IF_ERROR(read_next_batch());
_current_line_of_batch = 0;
} else if (_current_line_of_batch >= _batch->num_rows()) {
VLOG_DEBUG << "read_record_batch, current group id:" << _current_group
<< " current line of batch:" << _current_line_of_batch
<< " is larger than batch size:" << _batch->num_rows()
<< ". start to read next batch";
// read batch
RETURN_IF_ERROR(read_next_batch());
_current_line_of_batch = 0;
}
return Status::OK();
}
Status ParquetReaderWrap::init_parquet_type() {
// read batch
RETURN_IF_ERROR(read_next_batch());
_current_line_of_batch = 0;
if (_batch == nullptr) {
return Status::OK();
}
//save column type
std::shared_ptr<arrow::Schema> field_schema = _batch->schema();
for (int i = 0; i < _include_column_ids.size(); i++) {
std::shared_ptr<arrow::Field> field = field_schema->field(i);
if (!field) {
LOG(WARNING) << "Get field schema failed. Column order:" << i;
return Status::InternalError(_status.ToString());
}
_parquet_column_type.emplace_back(field->type()->id());
}
return Status::OK();
}
Status ParquetReaderWrap::read_next_batch() {
std::unique_lock<std::mutex> lock(_mtx);
while (!_closed && _queue.empty()) {
if (_batch_eof) {
return Status::OK();
}
_queue_reader_cond.wait_for(lock, std::chrono::seconds(1));
}
if (UNLIKELY(_closed)) {
return Status::InternalError(_status.message());
}
_batch = _queue.front();
_queue.pop_front();
_queue_writer_cond.notify_one();
return Status::OK();
}
void ParquetReaderWrap::read_batches(arrow::RecordBatchVector& batches, int current_group) {
_status = _reader->GetRecordBatchReader({current_group}, _include_column_ids, &_rb_reader);
if (!_status.ok()) {
_closed = true;
return;
}
_status = _rb_reader->ReadAll(&batches);
}
bool ParquetReaderWrap::filter_row_group(int current_group) {
return false;
}
} // namespace doris

View File

@ -1,79 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <arrow/type_fwd.h>
#include <parquet/arrow/reader.h>
#include <stdint.h>
#include <memory>
#include <string>
#include <vector>
#include "common/status.h"
#include "exec/arrow/arrow_reader.h"
#include "io/fs/file_reader_writer_fwd.h"
namespace arrow {
class RecordBatch;
} // namespace arrow
namespace parquet {
class FileMetaData;
} // namespace parquet
namespace doris {
class RuntimeState;
class SlotDescriptor;
class TupleDescriptor;
// Reader of parquet file
class ParquetReaderWrap final : public ArrowReaderWrap {
public:
// batch_size is not use here
ParquetReaderWrap(RuntimeState* state, const std::vector<SlotDescriptor*>& file_slot_descs,
io::FileReaderSPtr file_reader, int32_t num_of_columns_from_file,
int64_t range_start_offset, int64_t range_size, bool case_sensitive = true);
~ParquetReaderWrap() override = default;
Status size(int64_t* size) override;
Status init_reader(const TupleDescriptor* tuple_desc, const std::string& timezone) override;
Status init_parquet_type();
private:
Status read_record_batch(bool* eof);
private:
Status read_next_batch();
void read_batches(arrow::RecordBatchVector& batches, int current_group) override;
bool filter_row_group(int current_group) override;
private:
// parquet file reader object
std::shared_ptr<arrow::RecordBatch> _batch;
std::unique_ptr<parquet::arrow::FileReader> _reader;
std::shared_ptr<parquet::FileMetaData> _file_metadata;
std::vector<arrow::Type::type> _parquet_column_type;
int _rows_of_group; // rows in a group.
int _current_line_of_group;
int _current_line_of_batch;
std::string _timezone;
};
} // namespace doris

View File

@ -1,429 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "base_scanner.h"
#include <assert.h>
#include <fmt/format.h>
#include <gen_cpp/Metrics_types.h>
#include <gen_cpp/PlanNodes_types.h>
#include <glog/logging.h>
#include <parallel_hashmap/phmap.h>
#include <stddef.h>
#include <algorithm>
#include <boost/iterator/iterator_facade.hpp>
#include <iterator>
#include <map>
#include <string>
#include <utility>
// IWYU pragma: no_include <opentelemetry/common/threadlocal.h>
#include "common/compiler_util.h" // IWYU pragma: keep
#include "common/consts.h"
#include "gutil/casts.h"
#include "runtime/define_primitive_type.h"
#include "runtime/descriptors.h"
#include "runtime/runtime_state.h"
#include "runtime/types.h"
#include "vec/columns/column_nullable.h"
#include "vec/columns/column_vector.h"
#include "vec/columns/columns_number.h"
#include "vec/common/string_ref.h"
#include "vec/core/column_with_type_and_name.h"
#include "vec/data_types/data_type.h"
#include "vec/data_types/data_type_factory.hpp"
#include "vec/data_types/data_type_number.h"
#include "vec/exprs/vexpr_context.h"
namespace doris {
class TColumn;
class TNetworkAddress;
BaseScanner::BaseScanner(RuntimeState* state, RuntimeProfile* profile,
const TBrokerScanRangeParams& params,
const std::vector<TBrokerRangeDesc>& ranges,
const std::vector<TNetworkAddress>& broker_addresses,
const std::vector<TExpr>& pre_filter_texprs, ScannerCounter* counter)
: _state(state),
_params(params),
_ranges(ranges),
_broker_addresses(broker_addresses),
_next_range(0),
_counter(counter),
_dest_tuple_desc(nullptr),
_pre_filter_texprs(pre_filter_texprs),
_strict_mode(false),
_line_counter(0),
_profile(profile),
_rows_read_counter(nullptr),
_read_timer(nullptr),
_materialize_timer(nullptr),
_success(false),
_scanner_eof(false) {}
Status BaseScanner::open() {
_full_base_schema_view = vectorized::schema_util::FullBaseSchemaView::create_unique();
RETURN_IF_ERROR(init_expr_ctxes());
if (_params.__isset.strict_mode) {
_strict_mode = _params.strict_mode;
}
if (_strict_mode && !_params.__isset.dest_sid_to_src_sid_without_trans) {
return Status::InternalError("Slot map of dest to src must be set in strict mode");
}
_rows_read_counter = ADD_COUNTER(_profile, "RowsRead", TUnit::UNIT);
_read_timer = ADD_TIMER(_profile, "TotalRawReadTime(*)");
_materialize_timer = ADD_TIMER(_profile, "MaterializeTupleTime(*)");
DCHECK(!_ranges.empty());
const auto& range = _ranges[0];
_num_of_columns_from_file = range.__isset.num_of_columns_from_file
? implicit_cast<int>(range.num_of_columns_from_file)
: implicit_cast<int>(_src_slot_descs.size());
// check consistency
if (range.__isset.num_of_columns_from_file) {
int size = range.columns_from_path.size();
for (const auto& r : _ranges) {
if (r.columns_from_path.size() != size) {
return Status::InternalError("ranges have different number of columns.");
}
}
}
return Status::OK();
}
Status BaseScanner::init_expr_ctxes() {
// Construct _src_slot_descs
const TupleDescriptor* src_tuple_desc =
_state->desc_tbl().get_tuple_descriptor(_params.src_tuple_id);
if (src_tuple_desc == nullptr) {
return Status::InternalError("Unknown source tuple descriptor, tuple_id={}",
_params.src_tuple_id);
}
std::map<SlotId, SlotDescriptor*> src_slot_desc_map;
std::unordered_map<SlotDescriptor*, int> src_slot_desc_to_index {};
for (int i = 0, len = src_tuple_desc->slots().size(); i < len; ++i) {
auto* slot_desc = src_tuple_desc->slots()[i];
src_slot_desc_to_index.emplace(slot_desc, i);
src_slot_desc_map.emplace(slot_desc->id(), slot_desc);
}
for (auto slot_id : _params.src_slot_ids) {
auto it = src_slot_desc_map.find(slot_id);
if (it == std::end(src_slot_desc_map)) {
return Status::InternalError("Unknown source slot descriptor, slot_id={}", slot_id);
}
_src_slot_descs.emplace_back(it->second);
if (it->second->type().is_variant_type() &&
it->second->col_name() == BeConsts::DYNAMIC_COLUMN_NAME) {
_is_dynamic_schema = true;
}
}
_row_desc.reset(new RowDescriptor(_state->desc_tbl(),
std::vector<TupleId>({_params.src_tuple_id}),
std::vector<bool>({false})));
// preceding filter expr should be initialized by using `_row_desc`, which is the source row descriptor
if (!_pre_filter_texprs.empty()) {
// for vectorized, preceding filter exprs should be compounded to one passed from fe.
DCHECK(_pre_filter_texprs.size() == 1);
RETURN_IF_ERROR(vectorized::VExpr::create_expr_tree(
_state->obj_pool(), _pre_filter_texprs[0], &_vpre_filter_ctx_ptr));
RETURN_IF_ERROR(_vpre_filter_ctx_ptr->prepare(_state, *_row_desc));
RETURN_IF_ERROR(_vpre_filter_ctx_ptr->open(_state));
}
// Construct dest slots information
_dest_tuple_desc = _state->desc_tbl().get_tuple_descriptor(_params.dest_tuple_id);
if (_dest_tuple_desc == nullptr) {
return Status::InternalError("Unknown dest tuple descriptor, tuple_id={}",
_params.dest_tuple_id);
}
bool has_slot_id_map = _params.__isset.dest_sid_to_src_sid_without_trans;
for (auto slot_desc : _dest_tuple_desc->slots()) {
if (!slot_desc->is_materialized()) {
continue;
}
auto it = _params.expr_of_dest_slot.find(slot_desc->id());
if (it == std::end(_params.expr_of_dest_slot)) {
return Status::InternalError("No expr for dest slot, id={}, name={}", slot_desc->id(),
slot_desc->col_name());
}
vectorized::VExprContext* ctx = nullptr;
RETURN_IF_ERROR(vectorized::VExpr::create_expr_tree(_state->obj_pool(), it->second, &ctx));
RETURN_IF_ERROR(ctx->prepare(_state, *_row_desc.get()));
RETURN_IF_ERROR(ctx->open(_state));
_dest_vexpr_ctx.emplace_back(ctx);
if (has_slot_id_map) {
auto it1 = _params.dest_sid_to_src_sid_without_trans.find(slot_desc->id());
if (it1 == std::end(_params.dest_sid_to_src_sid_without_trans)) {
_src_slot_descs_order_by_dest.emplace_back(nullptr);
} else {
auto _src_slot_it = src_slot_desc_map.find(it1->second);
if (_src_slot_it == std::end(src_slot_desc_map)) {
return Status::InternalError("No src slot {} in src slot descs", it1->second);
}
_dest_slot_to_src_slot_index.emplace(_src_slot_descs_order_by_dest.size(),
src_slot_desc_to_index[_src_slot_it->second]);
_src_slot_descs_order_by_dest.emplace_back(_src_slot_it->second);
}
}
}
if (_dest_tuple_desc->table_desc()) {
_full_base_schema_view->db_name = _dest_tuple_desc->table_desc()->database();
_full_base_schema_view->table_name = _dest_tuple_desc->table_desc()->name();
_full_base_schema_view->table_id = _dest_tuple_desc->table_desc()->table_id();
}
return Status::OK();
}
// need exception safety
Status BaseScanner::_filter_src_block() {
auto origin_column_num = _src_block.columns();
// filter block
auto old_rows = _src_block.rows();
RETURN_IF_ERROR(vectorized::VExprContext::filter_block(_vpre_filter_ctx_ptr, &_src_block,
origin_column_num));
_counter->num_rows_unselected += old_rows - _src_block.rows();
return Status::OK();
}
Status BaseScanner::_materialize_dest_block(vectorized::Block* dest_block) {
// Do vectorized expr here
int ctx_idx = 0;
size_t rows = _src_block.rows();
auto filter_column = vectorized::ColumnUInt8::create(rows, 1);
auto& filter_map = filter_column->get_data();
auto origin_column_num = _src_block.columns();
for (auto slot_desc : _dest_tuple_desc->slots()) {
if (!slot_desc->is_materialized()) {
continue;
}
if (slot_desc->type().is_variant_type()) {
continue;
}
int dest_index = ctx_idx++;
auto* ctx = _dest_vexpr_ctx[dest_index];
int result_column_id = -1;
// PT1 => dest primitive type
RETURN_IF_ERROR(ctx->execute(&_src_block, &result_column_id));
bool is_origin_column = result_column_id < origin_column_num;
auto column_ptr =
is_origin_column && _src_block_mem_reuse
? _src_block.get_by_position(result_column_id).column->clone_resized(rows)
: _src_block.get_by_position(result_column_id).column;
DCHECK(column_ptr != nullptr);
// because of src_slot_desc is always be nullable, so the column_ptr after do dest_expr
// is likely to be nullable
if (LIKELY(column_ptr->is_nullable())) {
auto nullable_column =
reinterpret_cast<const vectorized::ColumnNullable*>(column_ptr.get());
for (int i = 0; i < rows; ++i) {
if (filter_map[i] && nullable_column->is_null_at(i)) {
if (_strict_mode && (_src_slot_descs_order_by_dest[dest_index]) &&
!_src_block.get_by_position(_dest_slot_to_src_slot_index[dest_index])
.column->is_null_at(i)) {
RETURN_IF_ERROR(_state->append_error_msg_to_file(
[&]() -> std::string {
return _src_block.dump_one_line(i, _num_of_columns_from_file);
},
[&]() -> std::string {
auto raw_value =
_src_block.get_by_position(ctx_idx).column->get_data_at(
i);
std::string raw_string = raw_value.to_string();
fmt::memory_buffer error_msg;
fmt::format_to(error_msg,
"column({}) value is incorrect while strict "
"mode is {}, "
"src value is {}",
slot_desc->col_name(), _strict_mode, raw_string);
return fmt::to_string(error_msg);
},
&_scanner_eof));
filter_map[i] = false;
} else if (!slot_desc->is_nullable()) {
RETURN_IF_ERROR(_state->append_error_msg_to_file(
[&]() -> std::string {
return _src_block.dump_one_line(i, _num_of_columns_from_file);
},
[&]() -> std::string {
fmt::memory_buffer error_msg;
fmt::format_to(error_msg,
"column({}) values is null while columns is not "
"nullable",
slot_desc->col_name());
return fmt::to_string(error_msg);
},
&_scanner_eof));
filter_map[i] = false;
}
}
}
if (!slot_desc->is_nullable()) column_ptr = nullable_column->get_nested_column_ptr();
} else if (slot_desc->is_nullable()) {
column_ptr = vectorized::make_nullable(column_ptr);
}
dest_block->insert(vectorized::ColumnWithTypeAndName(
std::move(column_ptr), slot_desc->get_data_type_ptr(), slot_desc->col_name()));
}
// handle dynamic generated columns
if (!_full_base_schema_view->empty()) {
assert(_is_dynamic_schema);
for (size_t x = dest_block->columns(); x < _src_block.columns(); ++x) {
auto& column_type_name = _src_block.get_by_position(x);
const TColumn& tcolumn =
_full_base_schema_view->column_name_to_column[column_type_name.name];
auto original_type = vectorized::DataTypeFactory::instance().create_data_type(tcolumn);
// type conflict free path, always cast to original type
if (!column_type_name.type->equals(*original_type)) {
vectorized::ColumnPtr column_ptr;
RETURN_IF_ERROR(vectorized::schema_util::cast_column(column_type_name,
original_type, &column_ptr));
column_type_name.column = column_ptr;
column_type_name.type = original_type;
}
dest_block->insert(vectorized::ColumnWithTypeAndName(std::move(column_type_name.column),
std::move(column_type_name.type),
column_type_name.name));
}
}
// after do the dest block insert operation, clear _src_block to remove the reference of origin column
if (_src_block_mem_reuse) {
_src_block.clear_column_data(origin_column_num);
} else {
_src_block.clear();
}
size_t dest_size = dest_block->columns();
// do filter
dest_block->insert(vectorized::ColumnWithTypeAndName(
std::move(filter_column), std::make_shared<vectorized::DataTypeUInt8>(),
"filter column"));
RETURN_IF_ERROR(vectorized::Block::filter_block(dest_block, dest_size, dest_size));
_counter->num_rows_filtered += rows - dest_block->rows();
return Status::OK();
}
// TODO: opt the reuse of src_block or dest_block column. some case we have to
// shallow copy the column of src_block to dest block
Status BaseScanner::_init_src_block() {
if (_src_block.is_empty_column()) {
for (auto i = 0; i < _num_of_columns_from_file; ++i) {
SlotDescriptor* slot_desc = _src_slot_descs[i];
if (slot_desc == nullptr) {
continue;
}
auto data_type = slot_desc->get_data_type_ptr();
auto column_ptr = data_type->create_column();
column_ptr->reserve(_state->batch_size());
_src_block.insert(vectorized::ColumnWithTypeAndName(std::move(column_ptr), data_type,
slot_desc->col_name()));
}
}
return Status::OK();
}
// need exception safety
Status BaseScanner::_fill_dest_block(vectorized::Block* dest_block, bool* eof) {
*eof = _scanner_eof;
_fill_columns_from_path();
if (LIKELY(_src_block.rows() > 0)) {
RETURN_IF_ERROR(BaseScanner::_filter_src_block());
RETURN_IF_ERROR(BaseScanner::_materialize_dest_block(dest_block));
}
return Status::OK();
}
void BaseScanner::close() {
if (_vpre_filter_ctx_ptr) {
_vpre_filter_ctx_ptr->close(_state);
}
}
void BaseScanner::_fill_columns_from_path() {
const TBrokerRangeDesc& range = _ranges.at(_next_range - 1);
if (range.__isset.num_of_columns_from_file) {
size_t start = range.num_of_columns_from_file;
size_t rows = _src_block.rows();
for (size_t i = 0; i < range.columns_from_path.size(); ++i) {
auto slot_desc = _src_slot_descs.at(i + start);
if (slot_desc == nullptr) continue;
auto is_nullable = slot_desc->is_nullable();
auto data_type = vectorized::DataTypeFactory::instance().create_data_type(TYPE_VARCHAR,
is_nullable);
auto data_column = data_type->create_column();
const std::string& column_from_path = range.columns_from_path[i];
for (size_t j = 0; j < rows; ++j) {
data_column->insert_data(const_cast<char*>(column_from_path.c_str()),
column_from_path.size());
}
_src_block.insert(vectorized::ColumnWithTypeAndName(std::move(data_column), data_type,
slot_desc->col_name()));
}
}
}
bool BaseScanner::is_null(const Slice& slice) {
return slice.size == 2 && slice.data[0] == '\\' && slice.data[1] == 'N';
}
bool BaseScanner::is_array(const Slice& slice) {
return slice.size > 1 && slice.data[0] == '[' && slice.data[slice.size - 1] == ']';
}
bool BaseScanner::check_array_format(std::vector<Slice>& split_values) {
// if not the array format, filter this line and return error url
auto dest_slot_descs = _dest_tuple_desc->slots();
for (int j = 0; j < split_values.size() && j < dest_slot_descs.size(); ++j) {
auto dest_slot_desc = dest_slot_descs[j];
if (!dest_slot_desc->is_materialized()) {
continue;
}
const Slice& value = split_values[j];
if (dest_slot_desc->type().is_array_type() && !is_null(value) && !is_array(value)) {
RETURN_IF_ERROR(_state->append_error_msg_to_file(
[&]() -> std::string { return std::string(value.data, value.size); },
[&]() -> std::string {
fmt::memory_buffer err_msg;
fmt::format_to(err_msg, "Invalid format for array column({})",
dest_slot_desc->col_name());
return fmt::to_string(err_msg);
},
&_scanner_eof));
_counter->num_rows_filtered++;
return false;
}
}
return true;
}
} // namespace doris

View File

@ -1,152 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <gen_cpp/Exprs_types.h>
#include <stdint.h>
#include <memory>
#include <unordered_map>
#include <vector>
#include "common/global_types.h"
#include "common/status.h"
#include "runtime/descriptors.h"
#include "util/runtime_profile.h"
#include "util/slice.h"
#include "vec/columns/column.h"
#include "vec/common/schema_util.h"
#include "vec/core/block.h"
#include "vec/exprs/vexpr.h"
namespace doris {
class RuntimeState;
class TBrokerRangeDesc;
class TBrokerScanRangeParams;
class TNetworkAddress;
namespace vectorized {
class VExprContext;
using MutableColumnPtr = IColumn::MutablePtr;
} // namespace vectorized
// The counter will be passed to each scanner.
// Note that this struct is not thread safe.
// So if we support concurrent scan in the future, we need to modify this struct.
struct ScannerCounter {
ScannerCounter() : num_rows_filtered(0), num_rows_unselected(0) {}
int64_t num_rows_filtered; // unqualified rows (unmatched the dest schema, or no partition)
int64_t num_rows_unselected; // rows filtered by predicates
};
class BaseScanner {
public:
BaseScanner(RuntimeState* state, RuntimeProfile* profile, const TBrokerScanRangeParams& params,
const std::vector<TBrokerRangeDesc>& ranges,
const std::vector<TNetworkAddress>& broker_addresses,
const std::vector<TExpr>& pre_filter_texprs, ScannerCounter* counter);
virtual ~BaseScanner() { vectorized::VExpr::close(_dest_vexpr_ctx, _state); }
virtual Status init_expr_ctxes();
// Open this scanner, will initialize information need to
virtual Status open();
// Get next block
virtual Status get_next(vectorized::Block* block, bool* eof) {
return Status::NotSupported("Not Implemented get block");
}
// Close this scanner
virtual void close() = 0;
bool is_dynamic_schema() const { return _is_dynamic_schema; }
protected:
Status _fill_dest_block(vectorized::Block* dest_block, bool* eof);
virtual Status _init_src_block();
bool is_null(const Slice& slice);
bool is_array(const Slice& slice);
bool check_array_format(std::vector<Slice>& split_values);
RuntimeState* _state;
const TBrokerScanRangeParams& _params;
//const TBrokerScanRangeParams& _params;
const std::vector<TBrokerRangeDesc>& _ranges;
const std::vector<TNetworkAddress>& _broker_addresses;
int _next_range;
// used for process stat
ScannerCounter* _counter;
// Used for constructing tuple
// slots for value read from broker file
std::vector<SlotDescriptor*> _src_slot_descs;
std::unique_ptr<RowDescriptor> _row_desc;
// Dest tuple descriptor and dest expr context
const TupleDescriptor* _dest_tuple_desc;
// the map values of dest slot id to src slot desc
// if there is not key of dest slot id in dest_sid_to_src_sid_without_trans, it will be set to nullptr
std::vector<SlotDescriptor*> _src_slot_descs_order_by_dest;
// dest slot desc index to src slot desc index
std::unordered_map<int, int> _dest_slot_to_src_slot_index;
// to filter src tuple directly
// the `_pre_filter_texprs` is the origin thrift exprs passed from scan node.
const std::vector<TExpr> _pre_filter_texprs;
bool _strict_mode;
int32_t _line_counter;
// Profile
RuntimeProfile* _profile;
RuntimeProfile::Counter* _rows_read_counter;
RuntimeProfile::Counter* _read_timer;
RuntimeProfile::Counter* _materialize_timer;
// Used to record whether a row of data is successfully read.
bool _success = false;
bool _scanner_eof = false;
// for vectorized load
std::vector<vectorized::VExprContext*> _dest_vexpr_ctx;
vectorized::VExprContext* _vpre_filter_ctx_ptr = nullptr;
vectorized::Block _src_block;
bool _src_block_mem_reuse = false;
int _num_of_columns_from_file;
// slot_ids for parquet predicate push down are in tuple desc
TupleId _tupleId = -1;
bool _is_dynamic_schema = false;
// for tracing dynamic schema
std::unique_ptr<vectorized::schema_util::FullBaseSchemaView> _full_base_schema_view;
private:
Status _filter_src_block();
void _fill_columns_from_path();
Status _materialize_dest_block(vectorized::Block* output_block);
};
} /* namespace doris */

View File

@ -54,7 +54,10 @@
#include "util/runtime_profile.h"
#include "util/time.h"
#include "vec/core/block.h"
#include "vec/exec/vparquet_scanner.h"
#include "vec/data_types/data_type_factory.hpp"
#include "vec/exec/format/parquet/vparquet_reader.h"
#include "vec/exprs/vexpr_context.h"
#include "vec/functions/simple_function_factory.h"
namespace doris {
using namespace ErrorCode;
@ -239,13 +242,6 @@ Status PushHandler::_convert_v2(TabletSharedPtr cur_tablet, RowsetSharedPtr* cur
}
// For push load, this tablet maybe not need push data, so that the path maybe empty
if (!path.empty()) {
std::unique_ptr<PushBrokerReader> reader(new (std::nothrow) PushBrokerReader());
if (reader == nullptr) {
LOG(WARNING) << "fail to create reader. tablet=" << cur_tablet->full_name();
res = Status::Error<MEM_ALLOC_FAILED>();
break;
}
// init schema
std::unique_ptr<Schema> schema(new (std::nothrow) Schema(tablet_schema));
if (schema == nullptr) {
@ -255,8 +251,10 @@ Status PushHandler::_convert_v2(TabletSharedPtr cur_tablet, RowsetSharedPtr* cur
}
// init Reader
if (!(res = reader->init(schema.get(), _request.broker_scan_range,
_request.desc_tbl))) {
std::unique_ptr<PushBrokerReader> reader = PushBrokerReader::create_unique(
schema.get(), _request.broker_scan_range, _request.desc_tbl);
res = reader->init();
if (reader == nullptr || !res.ok()) {
LOG(WARNING) << "fail to init reader. res=" << res
<< ", tablet=" << cur_tablet->full_name();
res = Status::Error<PUSH_INIT_ERROR>();
@ -312,8 +310,46 @@ Status PushHandler::_convert_v2(TabletSharedPtr cur_tablet, RowsetSharedPtr* cur
return res;
}
Status PushBrokerReader::init(const Schema* schema, const TBrokerScanRange& t_scan_range,
const TDescriptorTable& t_desc_tbl) {
PushBrokerReader::PushBrokerReader(const Schema* schema, const TBrokerScanRange& t_scan_range,
const TDescriptorTable& t_desc_tbl)
: _ready(false),
_eof(false),
_next_range(0),
_t_desc_tbl(t_desc_tbl),
_cur_reader_eof(false),
_params(t_scan_range.params),
_ranges(t_scan_range.ranges) {
// change broker params to file params
if (0 == _ranges.size()) {
return;
}
_file_params.file_type = _ranges[0].file_type;
_file_params.format_type = _ranges[0].format_type;
_file_params.src_tuple_id = _params.src_tuple_id;
_file_params.dest_tuple_id = _params.dest_tuple_id;
_file_params.num_of_columns_from_file = _ranges[0].num_of_columns_from_file;
_file_params.properties = _params.properties;
_file_params.expr_of_dest_slot = _params.expr_of_dest_slot;
_file_params.dest_sid_to_src_sid_without_trans = _params.dest_sid_to_src_sid_without_trans;
_file_params.strict_mode = _params.strict_mode;
_file_params.__isset.broker_addresses = true;
_file_params.broker_addresses = t_scan_range.broker_addresses;
for (int i = 0; i < _ranges.size(); ++i) {
TFileRangeDesc file_range;
file_range.load_id = _ranges[i].load_id;
file_range.path = _ranges[i].path;
file_range.start_offset = _ranges[i].start_offset;
file_range.__isset.size = true;
file_range.size = _ranges[i].size;
file_range.__isset.file_size = true;
file_range.file_size = _ranges[i].file_size;
file_range.columns_from_path = _ranges[i].columns_from_path;
_file_ranges.push_back(file_range);
}
}
Status PushBrokerReader::init() {
// init runtime state, runtime profile, counter
TUniqueId dummy_id;
dummy_id.hi = 0;
@ -329,7 +365,7 @@ Status PushBrokerReader::init(const Schema* schema, const TBrokerScanRange& t_sc
_runtime_state = RuntimeState::create_unique(params, query_options, query_globals,
ExecEnv::GetInstance());
DescriptorTbl* desc_tbl = nullptr;
Status status = DescriptorTbl::create(_runtime_state->obj_pool(), t_desc_tbl, &desc_tbl);
Status status = DescriptorTbl::create(_runtime_state->obj_pool(), _t_desc_tbl, &desc_tbl);
if (UNLIKELY(!status.ok())) {
LOG(WARNING) << "Failed to create descriptor table, msg: " << status;
return Status::Error<PUSH_INIT_ERROR>();
@ -343,27 +379,18 @@ Status PushBrokerReader::init(const Schema* schema, const TBrokerScanRange& t_sc
_runtime_profile = _runtime_state->runtime_profile();
_runtime_profile->set_name("PushBrokerReader");
_counter.reset(new ScannerCounter());
_file_cache_statistics.reset(new io::FileCacheStatistics());
_io_ctx.reset(new io::IOContext());
_io_ctx->file_cache_stats = _file_cache_statistics.get();
_io_ctx->query_id = &_runtime_state->query_id();
// init scanner
BaseScanner* scanner = nullptr;
switch (t_scan_range.ranges[0].format_type) {
case TFileFormatType::FORMAT_PARQUET:
scanner = new vectorized::VParquetScanner(
_runtime_state.get(), _runtime_profile, t_scan_range.params, t_scan_range.ranges,
t_scan_range.broker_addresses, _pre_filter_texprs, _counter.get());
break;
default:
LOG(WARNING) << "Unsupported file format type: " << t_scan_range.ranges[0].format_type;
return Status::Error<PUSH_INIT_ERROR>();
}
_scanner.reset(scanner);
status = _scanner->open();
if (UNLIKELY(!status.ok())) {
LOG(WARNING) << "Failed to open scanner, msg: " << status;
return Status::Error<PUSH_INIT_ERROR>();
auto slot_descs = desc_tbl->get_tuple_descriptor(0)->slots();
for (int i = 0; i < slot_descs.size(); i++) {
_all_col_names.push_back(slot_descs[i]->col_name());
}
RETURN_IF_ERROR(_init_expr_ctxes());
_ready = true;
return Status::OK();
}
@ -372,7 +399,151 @@ Status PushBrokerReader::next(vectorized::Block* block) {
if (!_ready || block == nullptr) {
return Status::Error<INVALID_ARGUMENT>();
}
_scanner->get_next(block, &_eof);
if (_cur_reader == nullptr || _cur_reader_eof) {
RETURN_IF_ERROR(_get_next_reader());
if (_eof) {
return Status::OK();
}
}
RETURN_IF_ERROR(_init_src_block());
size_t read_rows = 0;
RETURN_IF_ERROR(_cur_reader->get_next_block(_src_block_ptr, &read_rows, &_cur_reader_eof));
if (read_rows > 0) {
RETURN_IF_ERROR(_cast_to_input_block());
RETURN_IF_ERROR(_convert_to_output_block(block));
}
return Status::OK();
}
Status PushBrokerReader::close() {
_ready = false;
for (auto ctx : _dest_vexpr_ctx) {
if (ctx != nullptr) {
ctx->close(_runtime_state.get());
}
}
if (_push_down_expr) {
_push_down_expr->close(_runtime_state.get());
}
for (auto& [k, v] : _slot_id_to_filter_conjuncts) {
for (auto& ctx : v) {
if (ctx != nullptr) {
ctx->close(_runtime_state.get());
}
}
}
for (auto* ctx : _not_single_slot_filter_conjuncts) {
if (ctx != nullptr) {
ctx->close(_runtime_state.get());
}
}
return Status::OK();
}
Status PushBrokerReader::_init_src_block() {
_src_block.clear();
int idx = 0;
for (auto& slot : _src_slot_descs) {
vectorized::DataTypePtr data_type;
auto it = _name_to_col_type.find(slot->col_name());
if (it == _name_to_col_type.end() || _is_dynamic_schema) {
// not exist in file, using type from _input_tuple_desc
data_type = vectorized::DataTypeFactory::instance().create_data_type(
slot->type(), slot->is_nullable());
} else {
data_type = vectorized::DataTypeFactory::instance().create_data_type(it->second, true);
}
if (data_type == nullptr) {
return Status::NotSupported("Not support data type {} for column {}",
it == _name_to_col_type.end() ? slot->type().debug_string()
: it->second.debug_string(),
slot->col_name());
}
vectorized::MutableColumnPtr data_column = data_type->create_column();
_src_block.insert(vectorized::ColumnWithTypeAndName(std::move(data_column), data_type,
slot->col_name()));
_src_block_name_to_idx.emplace(slot->col_name(), idx++);
}
_src_block_ptr = &_src_block;
return Status::OK();
}
Status PushBrokerReader::_cast_to_input_block() {
if (_is_dynamic_schema) {
return Status::OK();
}
size_t idx = 0;
for (auto& slot_desc : _src_slot_descs) {
if (_name_to_col_type.find(slot_desc->col_name()) == _name_to_col_type.end()) {
continue;
}
if (slot_desc->type().is_variant_type()) {
continue;
}
auto& arg = _src_block_ptr->get_by_name(slot_desc->col_name());
// remove nullable here, let the get_function decide whether nullable
auto return_type = slot_desc->get_data_type_ptr();
vectorized::ColumnsWithTypeAndName arguments {
arg,
{vectorized::DataTypeString().create_column_const(
arg.column->size(), remove_nullable(return_type)->get_family_name()),
std::make_shared<vectorized::DataTypeString>(), ""}};
auto func_cast = vectorized::SimpleFunctionFactory::instance().get_function(
"CAST", arguments, return_type);
idx = _src_block_name_to_idx[slot_desc->col_name()];
RETURN_IF_ERROR(
func_cast->execute(nullptr, *_src_block_ptr, {idx}, idx, arg.column->size()));
_src_block_ptr->get_by_position(idx).type = std::move(return_type);
}
return Status::OK();
}
Status PushBrokerReader::_convert_to_output_block(vectorized::Block* block) {
block->clear();
int ctx_idx = 0;
size_t rows = _src_block.rows();
auto filter_column = vectorized::ColumnUInt8::create(rows, 1);
for (auto slot_desc : _dest_tuple_desc->slots()) {
if (!slot_desc->is_materialized()) {
continue;
}
int dest_index = ctx_idx++;
vectorized::ColumnPtr column_ptr;
auto* ctx = _dest_vexpr_ctx[dest_index];
int result_column_id = -1;
// PT1 => dest primitive type
RETURN_IF_ERROR(ctx->execute(&_src_block, &result_column_id));
column_ptr = _src_block.get_by_position(result_column_id).column;
// column_ptr maybe a ColumnConst, convert it to a normal column
column_ptr = column_ptr->convert_to_full_column_if_const();
DCHECK(column_ptr != nullptr);
// because of src_slot_desc is always be nullable, so the column_ptr after do dest_expr
// is likely to be nullable
if (LIKELY(column_ptr->is_nullable())) {
if (!slot_desc->is_nullable()) {
column_ptr = remove_nullable(column_ptr);
}
} else if (slot_desc->is_nullable()) {
column_ptr = make_nullable(column_ptr);
}
block->insert(dest_index,
vectorized::ColumnWithTypeAndName(column_ptr, slot_desc->get_data_type_ptr(),
slot_desc->col_name()));
}
_src_block.clear();
size_t dest_size = block->columns();
block->insert(vectorized::ColumnWithTypeAndName(std::move(filter_column),
std::make_shared<vectorized::DataTypeUInt8>(),
"filter column"));
RETURN_IF_ERROR(vectorized::Block::filter_block(block, dest_size, dest_size));
return Status::OK();
}
@ -382,6 +553,131 @@ void PushBrokerReader::print_profile() {
LOG(INFO) << ss.str();
}
Status PushBrokerReader::_init_expr_ctxes() {
// Construct _src_slot_descs
const TupleDescriptor* src_tuple_desc =
_runtime_state->desc_tbl().get_tuple_descriptor(_params.src_tuple_id);
if (src_tuple_desc == nullptr) {
return Status::InternalError("Unknown source tuple descriptor, tuple_id={}",
_params.src_tuple_id);
}
std::map<SlotId, SlotDescriptor*> src_slot_desc_map;
std::unordered_map<SlotDescriptor*, int> src_slot_desc_to_index {};
for (int i = 0, len = src_tuple_desc->slots().size(); i < len; ++i) {
auto* slot_desc = src_tuple_desc->slots()[i];
src_slot_desc_to_index.emplace(slot_desc, i);
src_slot_desc_map.emplace(slot_desc->id(), slot_desc);
}
for (auto slot_id : _params.src_slot_ids) {
auto it = src_slot_desc_map.find(slot_id);
if (it == std::end(src_slot_desc_map)) {
return Status::InternalError("Unknown source slot descriptor, slot_id={}", slot_id);
}
_src_slot_descs.emplace_back(it->second);
if (it->second->type().is_variant_type() &&
it->second->col_name() == BeConsts::DYNAMIC_COLUMN_NAME) {
_is_dynamic_schema = true;
}
}
_row_desc.reset(new RowDescriptor(_runtime_state->desc_tbl(),
std::vector<TupleId>({_params.src_tuple_id}),
std::vector<bool>({false})));
if (!_pre_filter_texprs.empty()) {
DCHECK(_pre_filter_texprs.size() == 1);
_vpre_filter_ctx_ptr.reset(new doris::vectorized::VExprContext*);
RETURN_IF_ERROR(vectorized::VExpr::create_expr_tree(
_runtime_state->obj_pool(), _pre_filter_texprs[0], _vpre_filter_ctx_ptr.get()));
RETURN_IF_ERROR((*_vpre_filter_ctx_ptr)->prepare(_runtime_state.get(), *_row_desc));
RETURN_IF_ERROR((*_vpre_filter_ctx_ptr)->open(_runtime_state.get()));
}
_dest_tuple_desc = _runtime_state->desc_tbl().get_tuple_descriptor(_params.dest_tuple_id);
if (_dest_tuple_desc == nullptr) {
return Status::InternalError("Unknown dest tuple descriptor, tuple_id={}",
_params.dest_tuple_id);
}
bool has_slot_id_map = _params.__isset.dest_sid_to_src_sid_without_trans;
for (auto slot_desc : _dest_tuple_desc->slots()) {
if (!slot_desc->is_materialized()) {
continue;
}
auto it = _params.expr_of_dest_slot.find(slot_desc->id());
if (it == std::end(_params.expr_of_dest_slot)) {
return Status::InternalError("No expr for dest slot, id={}, name={}", slot_desc->id(),
slot_desc->col_name());
}
vectorized::VExprContext* ctx = nullptr;
RETURN_IF_ERROR(
vectorized::VExpr::create_expr_tree(_runtime_state->obj_pool(), it->second, &ctx));
RETURN_IF_ERROR(ctx->prepare(_runtime_state.get(), *_row_desc.get()));
RETURN_IF_ERROR(ctx->open(_runtime_state.get()));
_dest_vexpr_ctx.emplace_back(ctx);
if (has_slot_id_map) {
auto it1 = _params.dest_sid_to_src_sid_without_trans.find(slot_desc->id());
if (it1 == std::end(_params.dest_sid_to_src_sid_without_trans)) {
_src_slot_descs_order_by_dest.emplace_back(nullptr);
} else {
auto _src_slot_it = src_slot_desc_map.find(it1->second);
if (_src_slot_it == std::end(src_slot_desc_map)) {
return Status::InternalError("No src slot {} in src slot descs", it1->second);
}
_dest_slot_to_src_slot_index.emplace(_src_slot_descs_order_by_dest.size(),
src_slot_desc_to_index[_src_slot_it->second]);
_src_slot_descs_order_by_dest.emplace_back(_src_slot_it->second);
}
}
}
return Status::OK();
}
Status PushBrokerReader::_get_next_reader() {
_cur_reader.reset(nullptr);
if (_next_range >= _file_ranges.size()) {
_eof = true;
return Status::OK();
}
const TFileRangeDesc& range = _file_ranges[_next_range++];
Status init_status;
switch (_file_params.format_type) {
case TFileFormatType::FORMAT_PARQUET: {
std::unique_ptr<vectorized::ParquetReader> parquet_reader =
vectorized::ParquetReader::create_unique(
_runtime_profile, _file_params, range,
_runtime_state->query_options().batch_size,
const_cast<cctz::time_zone*>(&_runtime_state->timezone_obj()),
_io_ctx.get(), _runtime_state.get());
RETURN_IF_ERROR(parquet_reader->open());
std::vector<std::string> place_holder;
init_status = parquet_reader->init_reader(
_all_col_names, place_holder, _colname_to_value_range, _push_down_expr,
_real_tuple_desc, _default_val_row_desc.get(), _col_name_to_slot_id,
&_not_single_slot_filter_conjuncts, &_slot_id_to_filter_conjuncts, false);
_cur_reader = std::move(parquet_reader);
if (!init_status.ok()) {
return Status::InternalError("failed to init reader for file {}, err: {}", range.path,
init_status.to_string());
}
std::unordered_map<std::string, std::tuple<std::string, const SlotDescriptor*>>
partition_columns;
std::unordered_map<std::string, vectorized::VExprContext*> missing_columns;
_cur_reader->get_columns(&_name_to_col_type, &_missing_cols);
_cur_reader->set_fill_columns(partition_columns, missing_columns);
break;
}
default:
LOG(WARNING) << "Unsupported file format type: " << _file_params.format_type;
return Status::Error<PUSH_INIT_ERROR>();
}
_cur_reader_eof = false;
return Status::OK();
}
std::string PushHandler::_debug_version_list(const Versions& versions) const {
std::ostringstream txt;
txt << "Versions: ";

View File

@ -26,14 +26,16 @@
#include <string>
#include <vector>
#include "common/factory_creator.h"
#include "common/object_pool.h"
#include "common/status.h"
#include "exec/base_scanner.h"
#include "exec/olap_common.h"
#include "olap/olap_common.h"
#include "olap/rowset/rowset.h"
#include "olap/tablet.h"
#include "olap/tablet_schema.h"
#include "runtime/runtime_state.h"
#include "vec/exec/format/generic_reader.h"
namespace doris {
@ -46,6 +48,8 @@ class TTabletInfo;
namespace vectorized {
class Block;
class GenericReader;
class VExprContext;
} // namespace vectorized
class PushHandler {
@ -83,28 +87,73 @@ private:
};
class PushBrokerReader {
public:
PushBrokerReader() : _ready(false), _eof(false) {}
~PushBrokerReader() = default;
ENABLE_FACTORY_CREATOR(PushBrokerReader);
Status init(const Schema* schema, const TBrokerScanRange& t_scan_range,
const TDescriptorTable& t_desc_tbl);
public:
PushBrokerReader(const Schema* schema, const TBrokerScanRange& t_scan_range,
const TDescriptorTable& t_desc_tbl);
~PushBrokerReader() = default;
Status init();
Status next(vectorized::Block* block);
void print_profile();
Status close() {
_ready = false;
return Status::OK();
}
Status close();
bool eof() const { return _eof; }
protected:
Status _get_next_reader();
Status _init_src_block();
Status _cast_to_input_block();
Status _convert_to_output_block(vectorized::Block* block);
Status _init_expr_ctxes();
private:
bool _ready;
bool _eof;
int _next_range;
vectorized::Block* _src_block_ptr;
vectorized::Block _src_block;
const TDescriptorTable& _t_desc_tbl;
std::unordered_map<std::string, TypeDescriptor> _name_to_col_type;
std::unordered_set<std::string> _missing_cols;
std::unordered_map<std::string, size_t> _src_block_name_to_idx;
std::vector<vectorized::VExprContext*> _dest_vexpr_ctx;
std::unique_ptr<vectorized::VExprContext*> _vpre_filter_ctx_ptr;
bool _is_dynamic_schema = false;
std::vector<SlotDescriptor*> _src_slot_descs_order_by_dest;
std::unordered_map<int, int> _dest_slot_to_src_slot_index;
std::vector<SlotDescriptor*> _src_slot_descs;
std::unique_ptr<RowDescriptor> _row_desc;
const TupleDescriptor* _dest_tuple_desc;
std::unique_ptr<RuntimeState> _runtime_state;
RuntimeProfile* _runtime_profile;
std::unique_ptr<ScannerCounter> _counter;
std::unique_ptr<BaseScanner> _scanner;
std::unique_ptr<vectorized::GenericReader> _cur_reader;
bool _cur_reader_eof;
const TBrokerScanRangeParams& _params;
const std::vector<TBrokerRangeDesc>& _ranges;
TFileScanRangeParams _file_params;
std::vector<TFileRangeDesc> _file_ranges;
std::unique_ptr<io::FileCacheStatistics> _file_cache_statistics;
std::unique_ptr<io::IOContext> _io_ctx;
// col names from _slot_descs
std::vector<std::string> _all_col_names;
std::unordered_map<std::string, ColumnValueRangeType>* _colname_to_value_range;
vectorized::VExprContext* _push_down_expr = nullptr;
const std::unordered_map<std::string, int>* _col_name_to_slot_id;
// single slot filter conjuncts
std::unordered_map<int, std::vector<vectorized::VExprContext*>> _slot_id_to_filter_conjuncts;
// not single(zero or multi) slot filter conjuncts
std::vector<vectorized::VExprContext*> _not_single_slot_filter_conjuncts;
// File source slot descriptors
std::vector<SlotDescriptor*> _file_slot_descs;
// row desc for default exprs
std::unique_ptr<RowDescriptor> _default_val_row_desc;
const TupleDescriptor* _real_tuple_desc = nullptr;
// Not used, just for placeholding
std::vector<TExpr> _pre_filter_texprs;
};

View File

@ -124,7 +124,6 @@ set(VEC_FILES
data_types/data_type_time.cpp
data_types/data_type_object.cpp
exec/vaggregation_node.cpp
exec/varrow_scanner.cpp
exec/vsort_node.cpp
exec/vexchange_node.cpp
exec/vset_operation_node.cpp
@ -137,7 +136,6 @@ set(VEC_FILES
exec/vrepeat_node.cpp
exec/vtable_function_node.cpp
exec/vjdbc_connector.cpp
exec/vparquet_scanner.cpp
exec/join/vhash_join_node.cpp
exec/join/vjoin_node_base.cpp
exec/join/vnested_loop_join_node.cpp

View File

@ -1,343 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exec/varrow_scanner.h"
#include <arrow/array/array_base.h>
#include <arrow/record_batch.h>
#include <arrow/type.h>
#include <fmt/format.h>
#include <gen_cpp/Metrics_types.h>
#include <gen_cpp/PlanNodes_types.h>
#include <gen_cpp/Types_types.h>
#include <glog/logging.h>
#include <algorithm>
#include <map>
#include <sstream>
#include <string>
#include <utility>
#include "exec/arrow/arrow_reader.h"
#include "io/file_factory.h"
#include "io/fs/file_reader.h"
#include "runtime/descriptors.h"
#include "runtime/runtime_state.h"
#include "runtime/thread_context.h"
#include "vec/aggregate_functions/aggregate_function.h"
#include "vec/columns/column.h"
#include "vec/core/block.h"
#include "vec/core/column_with_type_and_name.h"
#include "vec/core/columns_with_type_and_name.h"
#include "vec/core/field.h"
#include "vec/data_types/data_type.h"
#include "vec/data_types/data_type_factory.hpp"
#include "vec/data_types/data_type_nullable.h"
#include "vec/data_types/data_type_string.h"
#include "vec/functions/function.h"
#include "vec/functions/simple_function_factory.h"
#include "vec/utils/arrow_column_to_doris_column.h"
namespace doris {
class TExpr;
namespace io {
enum class FileCachePolicy : uint8_t;
} // namespace io
} // namespace doris
namespace doris::vectorized {
using namespace ErrorCode;
VArrowScanner::VArrowScanner(RuntimeState* state, RuntimeProfile* profile,
const TBrokerScanRangeParams& params,
const std::vector<TBrokerRangeDesc>& ranges,
const std::vector<TNetworkAddress>& broker_addresses,
const std::vector<TExpr>& pre_filter_texprs, ScannerCounter* counter)
: BaseScanner(state, profile, params, ranges, broker_addresses, pre_filter_texprs, counter),
// _splittable(params.splittable),
_cur_file_reader(nullptr),
_cur_file_eof(false),
_batch(nullptr),
_arrow_batch_cur_idx(0) {
_filtered_row_groups_counter = ADD_COUNTER(_profile, "FileFilteredRowGroups", TUnit::UNIT);
_filtered_rows_counter = ADD_COUNTER(_profile, "FileFilteredRows", TUnit::UNIT);
_filtered_bytes_counter = ADD_COUNTER(_profile, "FileFilteredBytes", TUnit::BYTES);
_total_rows_counter = ADD_COUNTER(_profile, "FileTotalRows", TUnit::UNIT);
_total_groups_counter = ADD_COUNTER(_profile, "FileTotalRowGroups", TUnit::UNIT);
}
VArrowScanner::~VArrowScanner() {
close();
}
void VArrowScanner::_init_system_properties(const TBrokerRangeDesc& range) {
_system_properties.system_type = range.file_type;
_system_properties.properties = _params.properties;
_system_properties.hdfs_params = range.hdfs_params;
_system_properties.broker_addresses.assign(_broker_addresses.begin(), _broker_addresses.end());
}
void VArrowScanner::_init_file_description(const TBrokerRangeDesc& range) {
_file_description.path = range.path;
_file_description.start_offset = range.start_offset;
_file_description.file_size = range.__isset.file_size ? range.file_size : 0;
}
Status VArrowScanner::_open_next_reader() {
// open_file_reader
if (_cur_file_reader != nullptr) {
delete _cur_file_reader;
_cur_file_reader = nullptr;
}
while (true) {
if (_next_range >= _ranges.size()) {
_scanner_eof = true;
return Status::OK();
}
const TBrokerRangeDesc& range = _ranges[_next_range++];
io::FileReaderSPtr file_reader;
_init_system_properties(range);
_init_file_description(range);
io::FileReaderOptions reader_options = FileFactory::get_reader_options(_state);
RETURN_IF_ERROR(FileFactory::create_file_reader(_profile, _system_properties,
_file_description, &_file_system,
&file_reader, reader_options));
if (file_reader->size() == 0) {
continue;
}
int32_t num_of_columns_from_file = _src_slot_descs.size();
if (range.__isset.num_of_columns_from_file) {
num_of_columns_from_file = range.num_of_columns_from_file;
}
_cur_file_reader = _new_arrow_reader(_src_slot_descs, file_reader, num_of_columns_from_file,
range.start_offset, range.size);
auto tuple_desc = _state->desc_tbl().get_tuple_descriptor(_tupleId);
Status status = _cur_file_reader->init_reader(tuple_desc, _state->timezone());
if (status.is<END_OF_FILE>()) {
continue;
} else {
if (!status.ok()) {
return Status::InternalError(" file: {} error:{}", range.path, status.to_string());
} else {
update_profile(_cur_file_reader->statistics());
return status;
}
}
}
}
void VArrowScanner::update_profile(std::shared_ptr<Statistics>& statistics) {
COUNTER_UPDATE(_total_groups_counter, statistics->total_groups);
COUNTER_UPDATE(_filtered_row_groups_counter, statistics->filtered_row_groups);
COUNTER_UPDATE(_total_rows_counter, statistics->total_rows);
COUNTER_UPDATE(_filtered_rows_counter, statistics->filtered_rows);
COUNTER_UPDATE(_filtered_bytes_counter, statistics->filtered_total_bytes);
}
Status VArrowScanner::open() {
RETURN_IF_ERROR(BaseScanner::open());
if (_ranges.empty()) {
return Status::OK();
}
return Status::OK();
}
// get next available arrow batch
Status VArrowScanner::_next_arrow_batch() {
_arrow_batch_cur_idx = 0;
// first, init file reader
if (_cur_file_reader == nullptr || _cur_file_eof) {
RETURN_IF_ERROR(_open_next_reader());
_cur_file_eof = false;
}
// second, loop until find available arrow batch or EOF
while (!_scanner_eof) {
RETURN_IF_ERROR(_cur_file_reader->next_batch(&_batch, &_cur_file_eof));
if (_cur_file_eof) {
RETURN_IF_ERROR(_open_next_reader());
_cur_file_eof = false;
continue;
}
if (_batch->num_rows() == 0) {
continue;
}
return Status::OK();
}
return Status::EndOfFile("EOF");
}
Status VArrowScanner::_init_arrow_batch_if_necessary() {
// 1. init batch if first time
// 2. reset reader if end of file
Status status = Status::OK();
if (_scanner_eof) {
return Status::EndOfFile("EOF");
}
if (_batch == nullptr || _arrow_batch_cur_idx >= _batch->num_rows()) {
return _next_arrow_batch();
}
return status;
}
Status VArrowScanner::_init_src_block() {
size_t batch_pos = 0;
_src_block.clear();
if (_batch->num_columns() < _num_of_columns_from_file) {
LOG(WARNING) << "some columns not found in the file, num_columns_obtained: "
<< _batch->num_columns()
<< " num_columns_required: " << _num_of_columns_from_file;
return Status::InvalidArgument("some columns not found in the file");
}
for (auto i = 0; i < _num_of_columns_from_file; ++i) {
SlotDescriptor* slot_desc = _src_slot_descs[i];
if (slot_desc == nullptr) {
continue;
}
auto* array = _batch->column(batch_pos++).get();
// let src column be nullable for simplify converting
// TODO, support not nullable for exec efficiently
auto is_nullable = true;
DataTypePtr data_type =
DataTypeFactory::instance().create_data_type(array->type().get(), is_nullable);
if (data_type == nullptr) {
return Status::NotSupported(
fmt::format("Not support arrow type:{}", array->type()->name()));
}
MutableColumnPtr data_column = data_type->create_column();
_src_block.insert(
ColumnWithTypeAndName(std::move(data_column), data_type, slot_desc->col_name()));
}
return Status::OK();
}
Status VArrowScanner::get_next(vectorized::Block* block, bool* eof) {
// overall of type converting:
// arrow type ==arrow_column_to_doris_column==> primitive type(PT0) ==cast_src_block==>
// primitive type(PT1) ==materialize_block==> dest primitive type
// first, we need to convert the arrow type to the corresponding internal type,
// such as arrow::INT16 to TYPE_SMALLINT(PT0).
// why need first step? we cannot convert the arrow type to type in src desc directly,
// it's too hard to achieve.
// second, convert PT0 to the type in src desc, such as TYPE_SMALLINT to TYPE_VARCHAR.(PT1)
// why need second step? the materialize step only accepts types specified in src desc.
// finally, through the materialized, convert to the type in dest desc, such as TYPE_DATETIME.
SCOPED_TIMER(_read_timer);
// init arrow batch
{
Status st = _init_arrow_batch_if_necessary();
if (!st.ok()) {
if (!st.is<END_OF_FILE>()) {
return st;
}
*eof = true;
return Status::OK();
}
}
RETURN_IF_ERROR(_init_src_block());
// convert arrow batch to block until reach the batch_size
while (!_scanner_eof) {
// cast arrow type to PT0 and append it to src block
// for example: arrow::Type::INT16 => TYPE_SMALLINT
RETURN_IF_ERROR(_append_batch_to_src_block(&_src_block));
// finalize the src block if full
if (_src_block.rows() >= _state->batch_size()) {
break;
}
auto status = _next_arrow_batch();
// if ok, append the batch to the src columns
if (status.ok()) {
continue;
}
// return error if not EOF
if (!status.is<END_OF_FILE>()) {
return status;
}
_cur_file_eof = true;
break;
}
COUNTER_UPDATE(_rows_read_counter, _src_block.rows());
SCOPED_TIMER(_materialize_timer);
// cast PT0 => PT1
// for example: TYPE_SMALLINT => TYPE_VARCHAR
RETURN_IF_ERROR(_cast_src_block(&_src_block));
// materialize, src block => dest columns
RETURN_IF_CATCH_EXCEPTION({ return _fill_dest_block(block, eof); });
}
// arrow type ==arrow_column_to_doris_column==> primitive type(PT0) ==cast_src_block==>
// primitive type(PT1) ==materialize_block==> dest primitive type
Status VArrowScanner::_cast_src_block(Block* block) {
// cast primitive type(PT0) to primitive type(PT1)
for (size_t i = 0; i < _num_of_columns_from_file; ++i) {
SlotDescriptor* slot_desc = _src_slot_descs[i];
if (slot_desc == nullptr) {
continue;
}
auto& arg = block->get_by_name(slot_desc->col_name());
// remove nullable here, let the get_function decide whether nullable
auto return_type = slot_desc->get_data_type_ptr();
ColumnsWithTypeAndName arguments {
arg,
{DataTypeString().create_column_const(
arg.column->size(), remove_nullable(return_type)->get_family_name()),
std::make_shared<DataTypeString>(), ""}};
auto func_cast =
SimpleFunctionFactory::instance().get_function("CAST", arguments, return_type);
RETURN_IF_ERROR(func_cast->execute(nullptr, *block, {i}, i, arg.column->size()));
block->get_by_position(i).type = std::move(return_type);
}
return Status::OK();
}
Status VArrowScanner::_append_batch_to_src_block(Block* block) {
size_t num_elements = std::min<size_t>((_state->batch_size() - block->rows()),
(_batch->num_rows() - _arrow_batch_cur_idx));
size_t column_pos = 0;
for (auto i = 0; i < _num_of_columns_from_file; ++i) {
SlotDescriptor* slot_desc = _src_slot_descs[i];
if (slot_desc == nullptr) {
continue;
}
auto* array = _batch->column(column_pos++).get();
auto& column_with_type_and_name = block->get_by_name(slot_desc->col_name());
RETURN_IF_ERROR(arrow_column_to_doris_column(
array, _arrow_batch_cur_idx, column_with_type_and_name.column,
column_with_type_and_name.type, num_elements, _state->timezone_obj()));
}
_arrow_batch_cur_idx += num_elements;
return Status::OK();
}
void VArrowScanner::close() {
BaseScanner::close();
if (_cur_file_reader != nullptr) {
delete _cur_file_reader;
_cur_file_reader = nullptr;
}
}
} // namespace doris::vectorized

View File

@ -1,109 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <vector>
#include "common/status.h"
#include "exec/base_scanner.h"
#include "io/file_factory.h"
#include "io/fs/file_reader_writer_fwd.h"
#include "util/runtime_profile.h"
namespace arrow {
class RecordBatch;
} // namespace arrow
namespace doris {
class ArrowReaderWrap;
class RuntimeState;
class SlotDescriptor;
class TBrokerRangeDesc;
class TBrokerScanRangeParams;
class TExpr;
class TNetworkAddress;
namespace io {
class FileSystem;
} // namespace io
namespace vectorized {
class Block;
} // namespace vectorized
struct Statistics;
} // namespace doris
namespace doris::vectorized {
// VArrow scanner convert the data read from orc|parquet to doris's columns.
class VArrowScanner : public BaseScanner {
public:
VArrowScanner(RuntimeState* state, RuntimeProfile* profile,
const TBrokerScanRangeParams& params, const std::vector<TBrokerRangeDesc>& ranges,
const std::vector<TNetworkAddress>& broker_addresses,
const std::vector<TExpr>& pre_filter_texprs, ScannerCounter* counter);
virtual ~VArrowScanner();
// Open this scanner, will initialize information need to
virtual Status open() override;
virtual Status get_next(Block* block, bool* eof) override;
// Update file predicate filter profile
void update_profile(std::shared_ptr<Statistics>& statistics);
virtual void close() override;
protected:
virtual ArrowReaderWrap* _new_arrow_reader(const std::vector<SlotDescriptor*>& file_slot_descs,
io::FileReaderSPtr file_reader,
int32_t num_of_columns_from_file,
int64_t range_start_offset, int64_t range_size) = 0;
private:
// Read next buffer from reader
Status _open_next_reader();
Status _next_arrow_batch();
Status _init_arrow_batch_if_necessary();
Status _init_src_block() override;
Status _append_batch_to_src_block(Block* block);
Status _cast_src_block(Block* block);
void _init_system_properties(const TBrokerRangeDesc& range);
void _init_file_description(const TBrokerRangeDesc& range);
private:
// Reader
ArrowReaderWrap* _cur_file_reader;
bool _cur_file_eof; // is read over?
std::shared_ptr<arrow::RecordBatch> _batch;
size_t _arrow_batch_cur_idx;
FileSystemProperties _system_properties;
FileDescription _file_description;
std::shared_ptr<io::FileSystem> _file_system;
RuntimeProfile::Counter* _filtered_row_groups_counter;
RuntimeProfile::Counter* _filtered_rows_counter;
RuntimeProfile::Counter* _filtered_bytes_counter;
RuntimeProfile::Counter* _total_rows_counter;
RuntimeProfile::Counter* _total_groups_counter;
};
} // namespace doris::vectorized

View File

@ -1,53 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exec/vparquet_scanner.h"
#include "exec/arrow/parquet_reader.h"
#include "vec/exec/varrow_scanner.h"
namespace doris {
class ArrowReaderWrap;
class RuntimeProfile;
class RuntimeState;
class SlotDescriptor;
class TBrokerRangeDesc;
class TBrokerScanRangeParams;
class TExpr;
class TNetworkAddress;
struct ScannerCounter;
} // namespace doris
namespace doris::vectorized {
VParquetScanner::VParquetScanner(RuntimeState* state, RuntimeProfile* profile,
const TBrokerScanRangeParams& params,
const std::vector<TBrokerRangeDesc>& ranges,
const std::vector<TNetworkAddress>& broker_addresses,
const std::vector<TExpr>& pre_filter_texprs,
ScannerCounter* counter)
: VArrowScanner(state, profile, params, ranges, broker_addresses, pre_filter_texprs,
counter) {}
ArrowReaderWrap* VParquetScanner::_new_arrow_reader(
const std::vector<SlotDescriptor*>& file_slot_descs, io::FileReaderSPtr file_reader,
int32_t num_of_columns_from_file, int64_t range_start_offset, int64_t range_size) {
return new ParquetReaderWrap(_state, file_slot_descs, file_reader, num_of_columns_from_file,
range_start_offset, range_size);
}
} // namespace doris::vectorized

View File

@ -1,59 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <stdint.h>
#include <vector>
#include "io/fs/file_reader_writer_fwd.h"
#include "vec/exec/varrow_scanner.h"
namespace doris {
class ArrowReaderWrap;
class RuntimeProfile;
class RuntimeState;
class SlotDescriptor;
class TBrokerRangeDesc;
class TBrokerScanRangeParams;
class TExpr;
class TNetworkAddress;
struct ScannerCounter;
} // namespace doris
namespace doris::vectorized {
// VParquet scanner convert the data read from Parquet to doris's columns.
class VParquetScanner final : public VArrowScanner {
public:
VParquetScanner(RuntimeState* state, RuntimeProfile* profile,
const TBrokerScanRangeParams& params,
const std::vector<TBrokerRangeDesc>& ranges,
const std::vector<TNetworkAddress>& broker_addresses,
const std::vector<TExpr>& pre_filter_texprs, ScannerCounter* counter);
~VParquetScanner() override = default;
protected:
ArrowReaderWrap* _new_arrow_reader(const std::vector<SlotDescriptor*>& file_slot_descs,
io::FileReaderSPtr file_reader,
int32_t num_of_columns_from_file, int64_t range_start_offset,
int64_t range_size) override;
};
} // namespace doris::vectorized

View File

@ -998,7 +998,7 @@ under the License.
<groupId>org.apache.spark</groupId>
<artifactId>spark-launcher_2.12</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
<!-- <scope>provided</scope> -->
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.12 -->
<dependency>

View File

@ -0,0 +1,11 @@
10000,aa,北京,0,11,4444,5555555,41232314,3.14,123.3423,111.111,111.111,2017-10-01,2017-10-01,2017-10-01 06:00:00,2017-10-01 06:00:00
10001,bb,北京,0,22,3333,666,2768658,5.32,123111.3242,222.222,222.222,2017-10-02,2017-10-02,2017-10-02 07:00:00,2017-10-02 07:00:00
10002,cc,北京,1,33,2222,453,5463456,4.321,11111.23423,333.333,333.333,2017-10-03,2017-10-03,2017-10-03 17:05:45,2017-10-03 17:05:45
10003,dd,上海,1,44,1111,-3241,-45235,1.34,54626.324,444.444,444.444,2017-10-04,2017-10-04,2017-10-04 12:59:12,2017-10-04 12:59:12
10004,ee,成都,0,55,-9999,21342,4513456,1.22,111.33,555.555,555.555,2017-10-05,2017-10-05,2017-10-05 11:20:00,2017-10-05 11:20:00
10005,ff,西安,0,66,8888,64562,4356,9.133,23423.45,666.666,666.666,2017-10-06,2017-10-06,2017-10-06 12:00:15,2017-10-06 12:00:15
10006,gg,深圳,1,77,-7777,-12313342,34534,8.100,12,777.777,777.777,2017-10-07,2017-10-07,2017-10-07 13:20:22,2017-10-07 13:20:22
10007,hh,杭州,0,88,6666,314234,43535356,34.124,324,888.888,888.888,2017-10-08,2017-10-08,2017-10-08 14:58:10,2017-10-08 14:58:10
10008,ii,上海,1,99,-5555,1341,23434534,342.120,34234.1,999.999,999.999,2017-10-09,2017-10-09,2017-10-09 25:12:22,2017-10-09 25:12:22
10009,jj,南京,0,11,4444,-123,53623567,11.22,324.33,111.111,111.111,2017-10-10,2017-10-10,2017-10-10 16:25:42,2017-10-10 16:25:42
10010,kk,成都,0,22,-3333,12314,674567,13,45464.435,222.222,222.222,2017-10-11,2017-10-11,2017-10-11 17:22:24,2017-10-11 17:22:24

View File

@ -0,0 +1,11 @@
10011|aa|北京|0|11|4444|5555555|41232314|3.14|123.3423|111.111|111.111|2017-10-01|2017-10-01|2017-10-01 06:00:00|2017-10-01 06:00:00
10012|bb|北京|0|22|3333|666|2768658|5.32|123111.3242|222.222|222.222|2017-10-02|2017-10-02|2017-10-02 07:00:00|2017-10-02 07:00:00
10013|cc|北京|1|33|2222|453|5463456|4.321|11111.23423|333.333|333.333|2017-10-03|2017-10-03|2017-10-03 17:05:45|2017-10-03 17:05:45
10014|dd|上海|1|44|1111|-3241|-45235|1.34|54626.324|444.444|444.444|2017-10-04|2017-10-04|2017-10-04 12:59:12|2017-10-04 12:59:12
10015|ee|成都|0|55|-9999|21342|4513456|1.22|111.33|555.555|555.555|2017-10-05|2017-10-05|2017-10-05 11:20:00|2017-10-05 11:20:00
10016|ff|西安|0|66|8888|64562|4356|9.133|23423.45|666.666|666.666|2017-10-06|2017-10-06|2017-10-06 12:00:15|2017-10-06 12:00:15
10017|gg|深圳|1|77|-7777|-12313342|34534|8.100|12|777.777|777.777|2017-10-07|2017-10-07|2017-10-07 13:20:22|2017-10-07 13:20:22
10018|hh|杭州|0|88|6666|314234|43535356|34.124|324|888.888|888.888|2017-10-08|2017-10-08|2017-10-08 14:58:10|2017-10-08 14:58:10
10019|ii|上海|1|99|-5555|1341|23434534|342.120|34234.1|999.999|999.999|2017-10-09|2017-10-09|2017-10-09 25:12:22|2017-10-09 25:12:22
10020|jj|南京|0|11|4444|-123|53623567|11.22|324.33|111.111|111.111|2017-10-10|2017-10-10|2017-10-10 16:25:42|2017-10-10 16:25:42
10021|kk|成都|0|22|-3333|12314|674567|13|45464.435|222.222|222.222|2017-10-11|2017-10-11|2017-10-11 17:22:24|2017-10-11 17:22:24

View File

@ -0,0 +1,37 @@
-- This file is automatically generated. You should know what you did if you want to edit this
-- !select --
10000 aa 北京 false 11 4444 5555555 41232314 3.14 123.3423 111.111 111.111 2017-10-01 2017-10-01 2017-10-01T06:00 2017-10-01T06:00
10001 bb 北京 false 22 3333 666 2768658 5.32 123111.3242 222.222 222.222 2017-10-02 2017-10-02 2017-10-02T07:00 2017-10-02T07:00
10002 cc 北京 true 33 2222 453 5463456 4.321 11111.23423 333.333 333.333 2017-10-03 2017-10-03 2017-10-03T17:05:45 2017-10-03T17:05:45
10003 dd 上海 true 44 1111 -3241 -45235 1.34 54626.324 444.444 444.444 2017-10-04 2017-10-04 2017-10-04T12:59:12 2017-10-04T12:59:12
10004 ee 成都 false 55 -9999 21342 4513456 1.22 111.33 555.555 555.555 2017-10-05 2017-10-05 2017-10-05T11:20 2017-10-05T11:20
10005 ff 西安 false 66 8888 64562 4356 9.133 23423.45 666.666 666.666 2017-10-06 2017-10-06 2017-10-06T12:00:15 2017-10-06T12:00:15
10006 gg 深圳 true 77 -7777 -12313342 34534 8.1 12.0 777.777 777.777 2017-10-07 2017-10-07 2017-10-07T13:20:22 2017-10-07T13:20:22
10007 hh 杭州 false 88 6666 314234 43535356 34.124 324.0 888.888 888.888 2017-10-08 2017-10-08 2017-10-08T14:58:10 2017-10-08T14:58:10
10008 ii 上海 true 99 -5555 1341 23434534 342.12 34234.1 999.999 999.999 2017-10-09 2017-10-09 \N \N
10009 jj 南京 false 11 4444 -123 53623567 11.22 324.33 111.111 111.111 2017-10-10 2017-10-10 2017-10-10T16:25:42 2017-10-10T16:25:42
10010 kk 成都 false 22 -3333 12314 674567 13.0 45464.435 222.222 222.222 2017-10-11 2017-10-11 2017-10-11T17:22:24 2017-10-11T17:22:24
10011 aa 北京 false 11 4444 5555555 41232314 3.14 123.3423 111.111 111.111 2017-10-01 2017-10-01 2017-10-01T06:00 2017-10-01T06:00
10012 bb 北京 false 22 3333 666 2768658 5.32 123111.3242 222.222 222.222 2017-10-02 2017-10-02 2017-10-02T07:00 2017-10-02T07:00
10013 cc 北京 true 33 2222 453 5463456 4.321 11111.23423 333.333 333.333 2017-10-03 2017-10-03 2017-10-03T17:05:45 2017-10-03T17:05:45
10014 dd 上海 true 44 1111 -3241 -45235 1.34 54626.324 444.444 444.444 2017-10-04 2017-10-04 2017-10-04T12:59:12 2017-10-04T12:59:12
10015 ee 成都 false 55 -9999 21342 4513456 1.22 111.33 555.555 555.555 2017-10-05 2017-10-05 2017-10-05T11:20 2017-10-05T11:20
10016 ff 西安 false 66 8888 64562 4356 9.133 23423.45 666.666 666.666 2017-10-06 2017-10-06 2017-10-06T12:00:15 2017-10-06T12:00:15
10017 gg 深圳 true 77 -7777 -12313342 34534 8.1 12.0 777.777 777.777 2017-10-07 2017-10-07 2017-10-07T13:20:22 2017-10-07T13:20:22
10018 hh 杭州 false 88 6666 314234 43535356 34.124 324.0 888.888 888.888 2017-10-08 2017-10-08 2017-10-08T14:58:10 2017-10-08T14:58:10
10019 ii 上海 true 99 -5555 1341 23434534 342.12 34234.1 999.999 999.999 2017-10-09 2017-10-09 \N \N
10020 jj 南京 false 11 4444 -123 53623567 11.22 324.33 111.111 111.111 2017-10-10 2017-10-10 2017-10-10T16:25:42 2017-10-10T16:25:42
10021 kk 成都 false 22 -3333 12314 674567 13.0 45464.435 222.222 222.222 2017-10-11 2017-10-11 2017-10-11T17:22:24 2017-10-11T17:22:24
-- !select --
10000 aa 北京 false 11 4444 5555555 41232314 3.14 123.3423 111.111 111.111 2017-10-01 2017-10-01 2017-10-01T06:00 2017-10-01T06:00
10001 bb 北京 false 22 3333 666 2768658 5.32 123111.3242 222.222 222.222 2017-10-02 2017-10-02 2017-10-02T07:00 2017-10-02T07:00
10002 cc 北京 true 33 2222 453 5463456 4.321 11111.23423 333.333 333.333 2017-10-03 2017-10-03 2017-10-03T17:05:45 2017-10-03T17:05:45
10003 dd 上海 true 44 1111 -3241 -45235 1.34 54626.324 444.444 444.444 2017-10-04 2017-10-04 2017-10-04T12:59:12 2017-10-04T12:59:12
10004 ee 成都 false 55 -9999 21342 4513456 1.22 111.33 555.555 555.555 2017-10-05 2017-10-05 2017-10-05T11:20 2017-10-05T11:20
10005 ff 西安 false 66 8888 64562 4356 9.133 23423.45 666.666 666.666 2017-10-06 2017-10-06 2017-10-06T12:00:15 2017-10-06T12:00:15
10006 gg 深圳 true 77 -7777 -12313342 34534 8.1 12.0 777.777 777.777 2017-10-07 2017-10-07 2017-10-07T13:20:22 2017-10-07T13:20:22
10007 hh 杭州 false 88 6666 314234 43535356 34.124 324.0 888.888 888.888 2017-10-08 2017-10-08 2017-10-08T14:58:10 2017-10-08T14:58:10
10008 ii 上海 true 99 -5555 1341 23434534 342.12 34234.1 999.999 999.999 2017-10-09 2017-10-09 \N \N
10009 jj 南京 false 11 4444 -123 53623567 11.22 324.33 111.111 111.111 2017-10-10 2017-10-10 2017-10-10T16:25:42 2017-10-10T16:25:42
10010 kk 成都 false 22 -3333 12314 674567 13.0 45464.435 222.222 222.222 2017-10-11 2017-10-11 2017-10-11T17:22:24 2017-10-11T17:22:24

View File

@ -48,7 +48,7 @@ testDirectories = ""
// this groups will not be executed
excludeGroups = ""
// this suites will not be executed
excludeSuites = "test_broker_load"
excludeSuites = "test_broker_load,test_spark_load"
// this directories will not be executed
excludeDirectories = ""

View File

@ -0,0 +1,149 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
suite("test_spark_load", "p0") {
// Need spark cluster, upload data file to hdfs
def testTable = "tbl_test_spark_load"
def testTable2 = "tbl_test_spark_load2"
def testResource = "spark_resource"
def yarnAddress = "master:8032"
def hdfsAddress = "hdfs://master:9000"
def hdfsWorkingDir = "hdfs://master:9000/doris"
brokerName =getBrokerName()
hdfsUser = getHdfsUser()
hdfsPasswd = getHdfsPasswd()
def create_test_table = {testTablex ->
def result1 = sql """
CREATE TABLE IF NOT EXISTS ${testTablex} (
c_int int(11) NULL,
c_char char(15) NULL,
c_varchar varchar(100) NULL,
c_bool boolean NULL,
c_tinyint tinyint(4) NULL,
c_smallint smallint(6) NULL,
c_bigint bigint(20) NULL,
c_largeint largeint(40) NULL,
c_float float NULL,
c_double double NULL,
c_decimal decimal(6, 3) NULL,
c_decimalv3 decimal(6, 3) NULL,
c_date date NULL,
c_datev2 date NULL,
c_datetime datetime NULL,
c_datetimev2 datetime NULL
)
DISTRIBUTED BY HASH(c_int) BUCKETS 1
PROPERTIES (
"replication_num" = "1"
)
"""
assertTrue(result1.size() == 1)
assertTrue(result1[0].size() == 1)
assertTrue(result1[0][0] == 0, "Create table should update 0 rows")
}
def create_spark_resource = {sparkType, sparkMaster, sparkQueue ->
def result1 = sql """
CREATE EXTERNAL RESOURCE "${testResource}"
PROPERTIES
(
"type" = "spark",
"spark.master" = "yarn",
"spark.submit.deployMode" = "cluster",
"spark.executor.memory" = "1g",
"spark.yarn.queue" = "default",
"spark.hadoop.yarn.resourcemanager.address" = "${yarnAddress}",
"spark.hadoop.fs.defaultFS" = "${hdfsAddress}",
"working_dir" = "${hdfsWorkingDir}",
"broker" = "${brokerName}",
"broker.username" = "${hdfsUser}",
"broker.password" = "${hdfsPasswd}"
);
"""
// DDL/DML return 1 row and 3 column, the only value is update row count
assertTrue(result1.size() == 1)
assertTrue(result1[0].size() == 1)
assertTrue(result1[0][0] == 0, "Create resource should update 0 rows")
}
def load_from_hdfs_use_spark = {testTablex, testTablex2, label, hdfsFilePath1, hdfsFilePath2 ->
def result1= sql """
LOAD LABEL ${label}
(
DATA INFILE("${hdfsFilePath1}")
INTO TABLE ${testTablex}
COLUMNS TERMINATED BY ",",
DATA INFILE("${hdfsFilePath2}")
INTO TABLE ${testTablex2}
COLUMNS TERMINATED BY "|"
)
WITH RESOURCE '${testResource}'
(
"spark.executor.memory" = "2g",
"spark.shuffle.compress" = "true"
)
PROPERTIES
(
"timeout" = "3600"
);
"""
assertTrue(result1.size() == 1)
assertTrue(result1[0].size() == 1)
assertTrue(result1[0][0] == 0, "Query OK, 0 rows affected")
}
def check_load_result = {checklabel, testTablex, testTablex2 ->
max_try_milli_secs = 10000
while(max_try_milli_secs) {
result = sql "show load where label = '${checklabel}'"
if(result[0][2] == "FINISHED") {
sql "sync"
qt_select "select * from ${testTablex} order by c_int"
qt_select "select * from ${testTablex2} order by c_int"
break
} else {
sleep(1000) // wait 1 second every time
max_try_milli_secs -= 1000
if(max_try_milli_secs <= 0) {
assertEquals(1, 2)
}
}
}
}
// if 'enableHdfs' in regression-conf.groovy has been set to true,
if (enableHdfs()) {
def hdfs_txt_file_path1 = uploadToHdfs "spark_load/all_types1.txt"
def hdfs_txt_file_path2 = uploadToHdfs "spark_load/all_types2.txt"
try {
sql "DROP TABLE IF EXISTS ${testTable}"
sql "DROP TABLE IF EXISTS ${testTable2}"
create_test_table.call(testTable)
create_test_table.call(testTable2)
def test_load_label = UUID.randomUUID().toString().replaceAll("-", "")
load_from_hdfs.call(testTable, testTable2, test_load_label, hdfs_txt_file_path1, hdfs_txt_file_path2)
check_load_result.call(test_load_label, testTable, testTable2)
} finally {
try_sql("DROP TABLE IF EXISTS ${testTable}")
try_sql("DROP TABLE IF EXISTS ${testTable2}")
}
}
}