[vectorized](feature) support partition sort node (#19708)

This commit is contained in:
zhangstar333
2023-05-25 11:22:02 +08:00
committed by GitHub
parent c49060a50b
commit 53ae24912f
12 changed files with 1342 additions and 6 deletions

View File

@ -62,6 +62,7 @@
#include "vec/exec/vempty_set_node.h"
#include "vec/exec/vexchange_node.h"
#include "vec/exec/vmysql_scan_node.h" // IWYU pragma: keep
#include "vec/exec/vpartition_sort_node.h"
#include "vec/exec/vrepeat_node.h"
#include "vec/exec/vschema_scan_node.h"
#include "vec/exec/vselect_node.h"
@ -318,6 +319,7 @@ Status ExecNode::create_node(RuntimeState* state, ObjectPool* pool, const TPlanN
case TPlanNodeType::FILE_SCAN_NODE:
case TPlanNodeType::JDBC_SCAN_NODE:
case TPlanNodeType::META_SCAN_NODE:
case TPlanNodeType::PARTITION_SORT_NODE:
break;
default: {
const auto& i = _TPlanNodeType_VALUES_TO_NAMES.find(tnode.node_type);
@ -438,6 +440,9 @@ Status ExecNode::create_node(RuntimeState* state, ObjectPool* pool, const TPlanN
*node = pool->add(new vectorized::VDataGenFunctionScanNode(pool, tnode, descs));
return Status::OK();
case TPlanNodeType::PARTITION_SORT_NODE:
*node = pool->add(new vectorized::VPartitionSortNode(pool, tnode, descs));
return Status::OK();
default:
std::map<int, const char*>::const_iterator i =
_TPlanNodeType_VALUES_TO_NAMES.find(tnode.node_type);

View File

@ -0,0 +1,54 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <stdint.h>
#include "operator.h"
#include "vec/exec/vpartition_sort_node.h"
namespace doris {
class ExecNode;
namespace pipeline {
class PartitionSortSinkOperatorBuilder final
: public OperatorBuilder<vectorized::VPartitionSortNode> {
public:
PartitionSortSinkOperatorBuilder(int32_t id, ExecNode* sort_node)
: OperatorBuilder(id, "PartitionSortSinkOperator", sort_node) {}
bool is_sink() const override { return true; }
OperatorPtr build_operator() override;
};
class PartitionSortSinkOperator final : public StreamingOperator<PartitionSortSinkOperatorBuilder> {
public:
PartitionSortSinkOperator(OperatorBuilderBase* operator_builder, ExecNode* sort_node)
: StreamingOperator(operator_builder, sort_node) {};
bool can_write() override { return true; }
};
OperatorPtr PartitionSortSinkOperatorBuilder::build_operator() {
return std::make_shared<PartitionSortSinkOperator>(this, _node);
}
} // namespace pipeline
} // namespace doris

View File

@ -0,0 +1,56 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <stdint.h>
#include "common/status.h"
#include "operator.h"
#include "vec/exec/vpartition_sort_node.h"
namespace doris {
class ExecNode;
class RuntimeState;
namespace pipeline {
class PartitionSortSourceOperatorBuilder final
: public OperatorBuilder<vectorized::VPartitionSortNode> {
public:
PartitionSortSourceOperatorBuilder(int32_t id, ExecNode* sort_node)
: OperatorBuilder(id, "PartitionSortSourceOperator", sort_node) {}
bool is_source() const override { return true; }
OperatorPtr build_operator() override;
};
class PartitionSortSourceOperator final
: public SourceOperator<PartitionSortSourceOperatorBuilder> {
public:
PartitionSortSourceOperator(OperatorBuilderBase* operator_builder, ExecNode* sort_node)
: SourceOperator(operator_builder, sort_node) {}
Status open(RuntimeState*) override { return Status::OK(); }
};
OperatorPtr PartitionSortSourceOperatorBuilder::build_operator() {
return std::make_shared<PartitionSortSourceOperator>(this, _node);
}
} // namespace pipeline
} // namespace doris

View File

@ -61,6 +61,8 @@
#include "pipeline/exec/nested_loop_join_probe_operator.h"
#include "pipeline/exec/olap_table_sink_operator.h"
#include "pipeline/exec/operator.h"
#include "pipeline/exec/partition_sort_sink_operator.h"
#include "pipeline/exec/partition_sort_source_operator.h"
#include "pipeline/exec/repeat_operator.h"
#include "pipeline/exec/result_file_sink_operator.h"
#include "pipeline/exec/result_sink_operator.h"
@ -532,6 +534,20 @@ Status PipelineFragmentContext::_build_pipelines(ExecNode* node, PipelinePtr cur
RETURN_IF_ERROR(cur_pipe->add_operator(sort_source));
break;
}
case TPlanNodeType::PARTITION_SORT_NODE: {
auto new_pipeline = add_pipeline();
RETURN_IF_ERROR(_build_pipelines(node->child(0), new_pipeline));
OperatorBuilderPtr partition_sort_sink = std::make_shared<PartitionSortSinkOperatorBuilder>(
next_operator_builder_id(), node);
RETURN_IF_ERROR(new_pipeline->set_sink(partition_sort_sink));
OperatorBuilderPtr partition_sort_source =
std::make_shared<PartitionSortSourceOperatorBuilder>(next_operator_builder_id(),
node);
RETURN_IF_ERROR(cur_pipe->add_operator(partition_sort_source));
break;
}
case TPlanNodeType::ANALYTIC_EVAL_NODE: {
auto new_pipeline = add_pipeline();
RETURN_IF_ERROR(_build_pipelines(node->child(0), new_pipeline));

View File

@ -71,6 +71,7 @@ set(VEC_FILES
common/sort/sorter.cpp
common/sort/topn_sorter.cpp
common/sort/vsort_exec_exprs.cpp
common/sort/partition_sorter.cpp
common/string_utils/string_utils.cpp
common/hex.cpp
common/allocator.cpp
@ -136,6 +137,7 @@ set(VEC_FILES
exec/vrepeat_node.cpp
exec/vtable_function_node.cpp
exec/vjdbc_connector.cpp
exec/vpartition_sort_node.cpp
exec/join/vhash_join_node.cpp
exec/join/vjoin_node_base.cpp
exec/join/vnested_loop_join_node.cpp

View File

@ -258,6 +258,38 @@ struct HashMethodSingleLowNullableColumn : public SingleColumnMethod {
return EmplaceResult(inserted);
}
template <typename Data>
ALWAYS_INLINE EmplaceResult emplace_key(Data& data, size_t hash_value, size_t row,
Arena& pool) {
if (key_column->is_null_at(row)) {
bool has_null_key = data.has_null_key_data();
data.has_null_key_data() = true;
if constexpr (has_mapped) {
return EmplaceResult(data.get_null_key_data(), data.get_null_key_data(),
!has_null_key);
} else {
return EmplaceResult(!has_null_key);
}
}
auto key_holder = Base::get_key_holder(row, pool);
bool inserted = false;
typename Data::LookupResult it;
data.emplace(key_holder, it, hash_value, inserted);
if constexpr (has_mapped) {
auto& mapped = *lookup_result_get_mapped(it);
if (inserted) {
new (&mapped) Mapped();
}
return EmplaceResult(mapped, mapped, inserted);
} else {
return EmplaceResult(inserted);
}
}
template <typename Data, typename Func, typename CreatorForNull>
ALWAYS_INLINE typename std::enable_if_t<has_mapped, Mapped>& lazy_emplace_key(
Data& data, size_t row, Arena& pool, Func&& f, CreatorForNull&& null_creator) {

View File

@ -0,0 +1,203 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/common/sort/partition_sorter.h"
#include <glog/logging.h>
#include <algorithm>
#include <queue>
#include "common/object_pool.h"
#include "vec/core/block.h"
#include "vec/core/sort_cursor.h"
#include "vec/functions/function_binary_arithmetic.h"
#include "vec/utils/util.hpp"
namespace doris {
class RowDescriptor;
class RuntimeProfile;
class RuntimeState;
namespace vectorized {
class VSortExecExprs;
} // namespace vectorized
} // namespace doris
namespace doris::vectorized {
PartitionSorter::PartitionSorter(VSortExecExprs& vsort_exec_exprs, int limit, int64_t offset,
ObjectPool* pool, std::vector<bool>& is_asc_order,
std::vector<bool>& nulls_first, const RowDescriptor& row_desc,
RuntimeState* state, RuntimeProfile* profile,
bool has_global_limit, int partition_inner_limit,
TopNAlgorithm::type top_n_algorithm, SortCursorCmp* previous_row)
: Sorter(vsort_exec_exprs, limit, offset, pool, is_asc_order, nulls_first),
_state(MergeSorterState::create_unique(row_desc, offset, limit, state, profile)),
_row_desc(row_desc),
_has_global_limit(has_global_limit),
_partition_inner_limit(partition_inner_limit),
_top_n_algorithm(top_n_algorithm),
_previous_row(previous_row) {}
Status PartitionSorter::append_block(Block* input_block) {
Block sorted_block = VectorizedUtils::create_empty_columnswithtypename(_row_desc);
DCHECK(input_block->columns() == sorted_block.columns());
RETURN_IF_ERROR(partial_sort(*input_block, sorted_block));
RETURN_IF_ERROR(_state->add_sorted_block(sorted_block));
return Status::OK();
}
Status PartitionSorter::prepare_for_read() {
auto& cursors = _state->get_cursors();
auto& blocks = _state->get_sorted_block();
auto& priority_queue = _state->get_priority_queue();
for (const auto& block : blocks) {
cursors.emplace_back(block, _sort_description);
}
for (auto& cursor : cursors) {
priority_queue.push(MergeSortCursor(&cursor));
}
return Status::OK();
}
Status PartitionSorter::get_next(RuntimeState* state, Block* block, bool* eos) {
if (_state->get_sorted_block().empty()) {
*eos = true;
} else {
if (_state->get_sorted_block().size() == 1 && _has_global_limit) {
auto& sorted_block = _state->get_sorted_block()[0];
block->swap(sorted_block);
block->set_num_rows(_partition_inner_limit);
*eos = true;
} else {
RETURN_IF_ERROR(partition_sort_read(block, eos, state->batch_size()));
}
}
return Status::OK();
}
Status PartitionSorter::partition_sort_read(Block* output_block, bool* eos, int batch_size) {
const auto& sorted_block = _state->get_sorted_block()[0];
size_t num_columns = sorted_block.columns();
bool mem_reuse = output_block->mem_reuse();
MutableColumns merged_columns =
mem_reuse ? output_block->mutate_columns() : sorted_block.clone_empty_columns();
size_t current_output_rows = 0;
auto& priority_queue = _state->get_priority_queue();
bool get_enough_data = false;
bool first_compare_row = false;
while (!priority_queue.empty()) {
auto current = priority_queue.top();
priority_queue.pop();
if (UNLIKELY(_previous_row->impl == nullptr)) {
first_compare_row = true;
*_previous_row = current;
}
switch (_top_n_algorithm) {
case TopNAlgorithm::ROW_NUMBER: {
//1 row_number no need to check distinct, just output partition_inner_limit row
if ((current_output_rows + _output_total_rows) < _partition_inner_limit) {
for (size_t i = 0; i < num_columns; ++i) {
merged_columns[i]->insert_from(*current->all_columns[i], current->pos);
}
} else {
//rows has get enough
get_enough_data = true;
}
current_output_rows++;
break;
}
case TopNAlgorithm::DENSE_RANK: {
//3 dense_rank() maybe need distinct rows of partition_inner_limit
if ((current_output_rows + _output_total_rows) < _partition_inner_limit) {
for (size_t i = 0; i < num_columns; ++i) {
merged_columns[i]->insert_from(*current->all_columns[i], current->pos);
}
} else {
get_enough_data = true;
}
if (_has_global_limit) {
current_output_rows++;
} else {
//when it's first comes, the rows are same no need compare
if (first_compare_row) {
current_output_rows++;
first_compare_row = false;
} else {
// not the first comes, so need compare those, when is distinct row
// so could current_output_rows++
bool cmp_res = _previous_row->compare_two_rows(current);
if (cmp_res == false) { // distinct row
current_output_rows++;
*_previous_row = current;
}
}
}
break;
}
case TopNAlgorithm::RANK: {
if (_has_global_limit &&
(current_output_rows + _output_total_rows) >= _partition_inner_limit) {
get_enough_data = true;
break;
}
bool cmp_res = _previous_row->compare_two_rows(current);
//get a distinct row
if (cmp_res == false) {
//here must be check distinct of two rows, and then check nums of row
if ((current_output_rows + _output_total_rows) >= _partition_inner_limit) {
get_enough_data = true;
break;
}
*_previous_row = current;
}
for (size_t i = 0; i < num_columns; ++i) {
merged_columns[i]->insert_from(*current->all_columns[i], current->pos);
}
current_output_rows++;
break;
}
default:
break;
}
if (!current->isLast()) {
current->next();
priority_queue.push(current);
}
if (current_output_rows == batch_size || get_enough_data == true) {
break;
}
}
if (!mem_reuse) {
Block merge_block = sorted_block.clone_with_columns(std::move(merged_columns));
merge_block.swap(*output_block);
}
_output_total_rows += output_block->rows();
if (current_output_rows == 0 || get_enough_data == true) {
*eos = true;
}
return Status::OK();
}
} // namespace doris::vectorized

View File

@ -0,0 +1,108 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <gen_cpp/PlanNodes_types.h>
#include <stddef.h>
#include <stdint.h>
#include <cstdint>
#include <memory>
#include <vector>
#include "common/status.h"
#include "vec/common/sort/sorter.h"
namespace doris {
class ObjectPool;
class RowDescriptor;
class RuntimeProfile;
class RuntimeState;
namespace vectorized {
class Block;
class VSortExecExprs;
} // namespace vectorized
} // namespace doris
namespace doris::vectorized {
struct SortCursorCmp {
public:
SortCursorCmp() {
impl = nullptr;
row = 0;
}
SortCursorCmp(const MergeSortCursor& cursor) : row(cursor->pos), impl(cursor.impl) {}
void reset() {
impl = nullptr;
row = 0;
}
bool compare_two_rows(const MergeSortCursor& rhs) const {
for (size_t i = 0; i < impl->sort_columns_size; ++i) {
int direction = impl->desc[i].direction;
int nulls_direction = impl->desc[i].nulls_direction;
int res = direction * impl->sort_columns[i]->compare_at(row, rhs.impl->pos,
*(rhs.impl->sort_columns[i]),
nulls_direction);
if (res != 0) {
return false;
}
}
return true;
}
int row = 0;
MergeSortCursorImpl* impl;
};
class PartitionSorter final : public Sorter {
ENABLE_FACTORY_CREATOR(PartitionSorter);
public:
PartitionSorter(VSortExecExprs& vsort_exec_exprs, int limit, int64_t offset, ObjectPool* pool,
std::vector<bool>& is_asc_order, std::vector<bool>& nulls_first,
const RowDescriptor& row_desc, RuntimeState* state, RuntimeProfile* profile,
bool has_global_limit, int partition_inner_limit,
TopNAlgorithm::type top_n_algorithm, SortCursorCmp* previous_row);
~PartitionSorter() override = default;
Status append_block(Block* block) override;
Status prepare_for_read() override;
Status get_next(RuntimeState* state, Block* block, bool* eos) override;
size_t data_size() const override { return _state->data_size(); }
bool is_spilled() const override { return false; }
Status partition_sort_read(Block* block, bool* eos, int batch_size);
int64 get_output_rows() const { return _output_total_rows; }
private:
std::unique_ptr<MergeSorterState> _state;
const RowDescriptor& _row_desc;
int64 _output_total_rows = 0;
bool _has_global_limit = false;
int _partition_inner_limit = 0;
TopNAlgorithm::type _top_n_algorithm = TopNAlgorithm::type::ROW_NUMBER;
SortCursorCmp* _previous_row;
};
} // namespace doris::vectorized

View File

@ -60,13 +60,14 @@ public:
limit_(limit),
profile_(profile) {
external_sort_bytes_threshold_ = state->external_sort_bytes_threshold();
if (profile != nullptr) {
block_spill_profile_ = profile->create_child("BlockSpill", true, true);
profile->add_child(block_spill_profile_, false, nullptr);
block_spill_profile_ = profile->create_child("BlockSpill", true, true);
profile->add_child(block_spill_profile_, false, nullptr);
spilled_block_count_ = ADD_COUNTER(block_spill_profile_, "BlockCount", TUnit::UNIT);
spilled_original_block_size_ =
ADD_COUNTER(block_spill_profile_, "BlockBytes", TUnit::BYTES);
spilled_block_count_ = ADD_COUNTER(block_spill_profile_, "BlockCount", TUnit::UNIT);
spilled_original_block_size_ =
ADD_COUNTER(block_spill_profile_, "BlockBytes", TUnit::BYTES);
}
}
~MergeSorterState() = default;
@ -91,6 +92,10 @@ public:
const Block& last_sorted_block() const { return sorted_blocks_.back(); }
std::vector<Block>& get_sorted_block() { return sorted_blocks_; }
std::priority_queue<MergeSortCursor>& get_priority_queue() { return priority_queue_; }
std::vector<MergeSortCursorImpl>& get_cursors() { return cursors_; }
std::unique_ptr<Block> unsorted_block_;
private:

View File

@ -0,0 +1,454 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exec/vpartition_sort_node.h"
#include <glog/logging.h>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <sstream>
#include <string>
#include "common/logging.h"
#include "common/object_pool.h"
#include "runtime/runtime_state.h"
#include "vec/common/hash_table/hash_set.h"
#include "vec/exprs/vexpr.h"
#include "vec/exprs/vexpr_context.h"
namespace doris::vectorized {
// Here is an empirical value.
static constexpr size_t HASH_MAP_PREFETCH_DIST = 16;
VPartitionSortNode::VPartitionSortNode(ObjectPool* pool, const TPlanNode& tnode,
const DescriptorTbl& descs)
: ExecNode(pool, tnode, descs), _hash_table_size_counter(nullptr) {
_partitioned_data = std::make_unique<PartitionedHashMapVariants>();
_agg_arena_pool = std::make_unique<Arena>();
_previous_row = std::make_unique<SortCursorCmp>();
}
Status VPartitionSortNode::init(const TPlanNode& tnode, RuntimeState* state) {
RETURN_IF_ERROR(ExecNode::init(tnode, state));
//order by key
if (tnode.partition_sort_node.__isset.sort_info) {
RETURN_IF_ERROR(_vsort_exec_exprs.init(tnode.partition_sort_node.sort_info, _pool));
_is_asc_order = tnode.partition_sort_node.sort_info.is_asc_order;
_nulls_first = tnode.partition_sort_node.sort_info.nulls_first;
}
//partition by key
if (tnode.partition_sort_node.__isset.partition_exprs) {
RETURN_IF_ERROR(VExpr::create_expr_trees(_pool, tnode.partition_sort_node.partition_exprs,
&_partition_expr_ctxs));
_partition_exprs_num = _partition_expr_ctxs.size();
_partition_columns.resize(_partition_exprs_num);
}
if (_partition_exprs_num == 0) {
_value_places.push_back(_pool->add(new PartitionBlocks()));
}
_has_global_limit = tnode.partition_sort_node.has_global_limit;
_top_n_algorithm = tnode.partition_sort_node.top_n_algorithm;
_partition_inner_limit = tnode.partition_sort_node.partition_inner_limit;
return Status::OK();
}
Status VPartitionSortNode::prepare(RuntimeState* state) {
VLOG_CRITICAL << "VPartitionSortNode::prepare";
SCOPED_TIMER(_runtime_profile->total_time_counter());
_hash_table_size_counter = ADD_COUNTER(_runtime_profile, "HashTableSize", TUnit::UNIT);
_build_timer = ADD_TIMER(runtime_profile(), "HashTableBuildTime");
_partition_sort_timer = ADD_TIMER(runtime_profile(), "PartitionSortTime");
_get_sorted_timer = ADD_TIMER(runtime_profile(), "GetSortedTime");
_selector_block_timer = ADD_TIMER(runtime_profile(), "SelectorBlockTime");
_emplace_key_timer = ADD_TIMER(runtime_profile(), "EmplaceKeyTime");
RETURN_IF_ERROR(ExecNode::prepare(state));
RETURN_IF_ERROR(_vsort_exec_exprs.prepare(state, child(0)->row_desc(), _row_descriptor));
RETURN_IF_ERROR(VExpr::prepare(_partition_expr_ctxs, state, child(0)->row_desc()));
_init_hash_method();
return Status::OK();
}
Status VPartitionSortNode::_split_block_by_partition(vectorized::Block* input_block,
int batch_size) {
for (int i = 0; i < _partition_exprs_num; ++i) {
int result_column_id = -1;
RETURN_IF_ERROR(_partition_expr_ctxs[i]->execute(input_block, &result_column_id));
DCHECK(result_column_id != -1);
_partition_columns[i] = input_block->get_by_position(result_column_id).column.get();
}
_emplace_into_hash_table(_partition_columns, input_block, batch_size);
return Status::OK();
}
void VPartitionSortNode::_emplace_into_hash_table(const ColumnRawPtrs& key_columns,
const vectorized::Block* input_block,
int batch_size) {
std::visit(
[&](auto&& agg_method) -> void {
SCOPED_TIMER(_build_timer);
using HashMethodType = std::decay_t<decltype(agg_method)>;
using HashTableType = std::decay_t<decltype(agg_method.data)>;
using AggState = typename HashMethodType::State;
AggState state(key_columns, _partition_key_sz, nullptr);
size_t num_rows = input_block->rows();
_pre_serialize_key_if_need(state, agg_method, key_columns, num_rows);
//PHHashMap
if constexpr (HashTableTraits<HashTableType>::is_phmap) {
if (_hash_values.size() < num_rows) {
_hash_values.resize(num_rows);
}
if constexpr (ColumnsHashing::IsPreSerializedKeysHashMethodTraits<
AggState>::value) {
for (size_t i = 0; i < num_rows; ++i) {
_hash_values[i] = agg_method.data.hash(agg_method.keys[i]);
}
} else {
for (size_t i = 0; i < num_rows; ++i) {
_hash_values[i] =
agg_method.data.hash(state.get_key_holder(i, *_agg_arena_pool));
}
}
}
for (size_t row = 0; row < num_rows; ++row) {
SCOPED_TIMER(_emplace_key_timer);
PartitionDataPtr aggregate_data = nullptr;
auto emplace_result = [&]() {
if constexpr (HashTableTraits<HashTableType>::is_phmap) {
if (LIKELY(row + HASH_MAP_PREFETCH_DIST < num_rows)) {
agg_method.data.prefetch_by_hash(
_hash_values[row + HASH_MAP_PREFETCH_DIST]);
}
return state.emplace_key(agg_method.data, _hash_values[row], row,
*_agg_arena_pool);
} else {
return state.emplace_key(agg_method.data, row, *_agg_arena_pool);
}
}();
/// If a new key is inserted, initialize the states of the aggregate functions, and possibly something related to the key.
if (emplace_result.is_inserted()) {
/// exception-safety - if you can not allocate memory or create states, then destructors will not be called.
emplace_result.set_mapped(nullptr);
aggregate_data = _pool->add(new PartitionBlocks());
emplace_result.set_mapped(aggregate_data);
_value_places.push_back(aggregate_data);
_num_partition++;
} else {
aggregate_data = emplace_result.get_mapped();
}
assert(aggregate_data != nullptr);
aggregate_data->add_row_idx(row);
}
for (auto place : _value_places) {
SCOPED_TIMER(_selector_block_timer);
place->append_block_by_selector(input_block, child(0)->row_desc(),
_has_global_limit, _partition_inner_limit,
batch_size);
}
},
_partitioned_data->_partition_method_variant);
}
Status VPartitionSortNode::sink(RuntimeState* state, vectorized::Block* input_block, bool eos) {
auto current_rows = input_block->rows();
if (current_rows > 0) {
child_input_rows = child_input_rows + current_rows;
if (UNLIKELY(_partition_exprs_num == 0)) {
//no partition key
_value_places[0]->append_whole_block(input_block, child(0)->row_desc());
} else {
//just simply use partition num to check
//TODO: here could set can read to true directly. need mutex
if (_num_partition > 512 && child_input_rows < 10000 * _num_partition) {
_blocks_buffer.push(std::move(*input_block));
} else {
RETURN_IF_ERROR(_split_block_by_partition(input_block, state->batch_size()));
RETURN_IF_CANCELLED(state);
RETURN_IF_ERROR(
state->check_query_state("VPartitionSortNode, while split input block."));
input_block->clear_column_data();
}
}
}
if (eos) {
//seems could free for hashtable
_agg_arena_pool.reset(nullptr);
_partitioned_data.reset(nullptr);
SCOPED_TIMER(_partition_sort_timer);
for (int i = 0; i < _value_places.size(); ++i) {
auto sorter = PartitionSorter::create_unique(
_vsort_exec_exprs, _limit, 0, _pool, _is_asc_order, _nulls_first,
child(0)->row_desc(), state, i == 0 ? _runtime_profile.get() : nullptr,
_has_global_limit, _partition_inner_limit, _top_n_algorithm,
_previous_row.get());
DCHECK(child(0)->row_desc().num_materialized_slots() ==
_value_places[i]->blocks.back()->columns());
//get blocks from every partition, and sorter get those data.
for (const auto& block : _value_places[i]->blocks) {
RETURN_IF_ERROR(sorter->append_block(block.get()));
}
sorter->init_profile(_runtime_profile.get());
RETURN_IF_ERROR(sorter->prepare_for_read());
_partition_sorts.push_back(std::move(sorter));
}
if (state->enable_profile()) {
debug_profile();
}
COUNTER_SET(_hash_table_size_counter, int64_t(_num_partition));
_can_read = true;
}
return Status::OK();
}
Status VPartitionSortNode::open(RuntimeState* state) {
VLOG_CRITICAL << "VPartitionSortNode::open";
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::open(state));
RETURN_IF_ERROR(child(0)->open(state));
bool eos = false;
std::unique_ptr<Block> input_block = Block::create_unique();
do {
RETURN_IF_ERROR(child(0)->get_next_after_projects(
state, input_block.get(), &eos,
std::bind((Status(ExecNode::*)(RuntimeState*, vectorized::Block*, bool*)) &
ExecNode::get_next,
_children[0], std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3)));
RETURN_IF_ERROR(sink(state, input_block.get(), eos));
} while (!eos);
child(0)->close(state);
return Status::OK();
}
Status VPartitionSortNode::alloc_resource(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::alloc_resource(state));
RETURN_IF_ERROR(VExpr::open(_partition_expr_ctxs, state));
RETURN_IF_ERROR(_vsort_exec_exprs.open(state));
RETURN_IF_CANCELLED(state);
RETURN_IF_ERROR(state->check_query_state("VPartitionSortNode, while open."));
return Status::OK();
}
Status VPartitionSortNode::pull(doris::RuntimeState* state, vectorized::Block* output_block,
bool* eos) {
RETURN_IF_CANCELLED(state);
output_block->clear_column_data();
bool current_eos = false;
RETURN_IF_ERROR(get_sorted_block(state, output_block, &current_eos));
if (_sort_idx >= _partition_sorts.size() && output_block->rows() == 0) {
if (_blocks_buffer.empty() == false) {
_blocks_buffer.front().swap(*output_block);
_blocks_buffer.pop();
} else {
*eos = true;
}
}
return Status::OK();
}
Status VPartitionSortNode::get_next(RuntimeState* state, Block* output_block, bool* eos) {
if (state == nullptr || output_block == nullptr || eos == nullptr) {
return Status::InternalError("input is nullptr");
}
VLOG_CRITICAL << "VPartitionSortNode::get_next";
SCOPED_TIMER(_runtime_profile->total_time_counter());
return pull(state, output_block, eos);
}
Status VPartitionSortNode::get_sorted_block(RuntimeState* state, Block* output_block,
bool* current_eos) {
SCOPED_TIMER(_get_sorted_timer);
//sorter output data one by one
if (_sort_idx < _partition_sorts.size()) {
RETURN_IF_ERROR(_partition_sorts[_sort_idx]->get_next(state, output_block, current_eos));
}
if (*current_eos) {
//current sort have eos, so get next idx
_previous_row->reset();
auto rows = _partition_sorts[_sort_idx]->get_output_rows();
partition_profile_output_rows.push_back(rows);
_num_rows_returned += rows;
_partition_sorts[_sort_idx].reset(nullptr);
_sort_idx++;
}
return Status::OK();
}
Status VPartitionSortNode::close(RuntimeState* state) {
VLOG_CRITICAL << "VPartitionSortNode::close";
if (is_closed()) {
return Status::OK();
}
return ExecNode::close(state);
}
void VPartitionSortNode::release_resource(RuntimeState* state) {
VExpr::close(_partition_expr_ctxs, state);
_vsort_exec_exprs.close(state);
ExecNode::release_resource(state);
}
void VPartitionSortNode::_init_hash_method() {
if (_partition_exprs_num == 0) {
return;
} else if (_partition_exprs_num == 1) {
auto is_nullable = _partition_expr_ctxs[0]->root()->is_nullable();
switch (_partition_expr_ctxs[0]->root()->result_type()) {
case TYPE_TINYINT:
case TYPE_BOOLEAN:
_partitioned_data->init(PartitionedHashMapVariants::Type::int8_key, is_nullable);
return;
case TYPE_SMALLINT:
_partitioned_data->init(PartitionedHashMapVariants::Type::int16_key, is_nullable);
return;
case TYPE_INT:
case TYPE_FLOAT:
case TYPE_DATEV2:
_partitioned_data->init(PartitionedHashMapVariants::Type::int32_key, is_nullable);
return;
case TYPE_BIGINT:
case TYPE_DOUBLE:
case TYPE_DATE:
case TYPE_DATETIME:
case TYPE_DATETIMEV2:
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_key, is_nullable);
return;
case TYPE_LARGEINT: {
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_key, is_nullable);
return;
}
case TYPE_DECIMALV2:
case TYPE_DECIMAL32:
case TYPE_DECIMAL64:
case TYPE_DECIMAL128I: {
DataTypePtr& type_ptr = _partition_expr_ctxs[0]->root()->data_type();
TypeIndex idx = is_nullable ? assert_cast<const DataTypeNullable&>(*type_ptr)
.get_nested_type()
->get_type_id()
: type_ptr->get_type_id();
WhichDataType which(idx);
if (which.is_decimal32()) {
_partitioned_data->init(PartitionedHashMapVariants::Type::int32_key, is_nullable);
} else if (which.is_decimal64()) {
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_key, is_nullable);
} else {
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_key, is_nullable);
}
return;
}
case TYPE_CHAR:
case TYPE_VARCHAR:
case TYPE_STRING: {
_partitioned_data->init(PartitionedHashMapVariants::Type::string_key, is_nullable);
break;
}
default:
_partitioned_data->init(PartitionedHashMapVariants::Type::serialized);
}
} else {
bool use_fixed_key = true;
bool has_null = false;
int key_byte_size = 0;
_partition_key_sz.resize(_partition_exprs_num);
for (int i = 0; i < _partition_exprs_num; ++i) {
const auto& data_type = _partition_expr_ctxs[i]->root()->data_type();
if (!data_type->have_maximum_size_of_value()) {
use_fixed_key = false;
break;
}
auto is_null = data_type->is_nullable();
has_null |= is_null;
_partition_key_sz[i] =
data_type->get_maximum_size_of_value_in_memory() - (is_null ? 1 : 0);
key_byte_size += _partition_key_sz[i];
}
if (std::tuple_size<KeysNullMap<UInt256>>::value + key_byte_size > sizeof(UInt256)) {
use_fixed_key = false;
}
if (use_fixed_key) {
if (has_null) {
if (std::tuple_size<KeysNullMap<UInt64>>::value + key_byte_size <= sizeof(UInt64)) {
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_keys, has_null);
} else if (std::tuple_size<KeysNullMap<UInt128>>::value + key_byte_size <=
sizeof(UInt128)) {
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_keys,
has_null);
} else {
_partitioned_data->init(PartitionedHashMapVariants::Type::int256_keys,
has_null);
}
} else {
if (key_byte_size <= sizeof(UInt64)) {
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_keys, has_null);
} else if (key_byte_size <= sizeof(UInt128)) {
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_keys,
has_null);
} else {
_partitioned_data->init(PartitionedHashMapVariants::Type::int256_keys,
has_null);
}
}
} else {
_partitioned_data->init(PartitionedHashMapVariants::Type::serialized);
}
}
}
void VPartitionSortNode::debug_profile() {
fmt::memory_buffer partition_rows_read, partition_blocks_read;
fmt::format_to(partition_rows_read, "[");
fmt::format_to(partition_blocks_read, "[");
for (auto place : _value_places) {
fmt::format_to(partition_rows_read, "{}, ", place->get_total_rows());
fmt::format_to(partition_rows_read, "{}, ", place->blocks.size());
}
fmt::format_to(partition_rows_read, "]");
fmt::format_to(partition_blocks_read, "]");
runtime_profile()->add_info_string("PerPartitionBlocksRead", partition_blocks_read.data());
runtime_profile()->add_info_string("PerPartitionRowsRead", partition_rows_read.data());
fmt::memory_buffer partition_output_rows;
fmt::format_to(partition_output_rows, "[");
for (auto row : partition_profile_output_rows) {
fmt::format_to(partition_output_rows, "{}, ", row);
}
fmt::format_to(partition_output_rows, "]");
runtime_profile()->add_info_string("PerPartitionOutputRows", partition_output_rows.data());
}
} // namespace doris::vectorized

View File

@ -0,0 +1,386 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <glog/logging.h>
#include <cstdint>
#include <memory>
#include "exec/exec_node.h"
#include "vec/columns/column.h"
#include "vec/common/columns_hashing.h"
#include "vec/common/hash_table/hash.h"
#include "vec/common/hash_table/ph_hash_map.h"
#include "vec/common/hash_table/string_hash_map.h"
#include "vec/common/sort/partition_sorter.h"
#include "vec/common/sort/vsort_exec_exprs.h"
#include "vec/core/block.h"
namespace doris {
namespace vectorized {
static constexpr size_t INITIAL_BUFFERED_BLOCK_BYTES = 64 << 20;
struct PartitionBlocks {
public:
PartitionBlocks() = default;
~PartitionBlocks() = default;
void add_row_idx(size_t row) { selector.push_back(row); }
void append_block_by_selector(const vectorized::Block* input_block,
const RowDescriptor& row_desc, bool is_limit,
int64_t partition_inner_limit, int batch_size) {
if (blocks.empty() || reach_limit()) {
init_rows = batch_size;
blocks.push_back(Block::create_unique(VectorizedUtils::create_empty_block(row_desc)));
}
auto columns = input_block->get_columns();
auto mutable_columns = blocks.back()->mutate_columns();
DCHECK(columns.size() == mutable_columns.size());
for (int i = 0; i < mutable_columns.size(); ++i) {
columns[i]->append_data_by_selector(mutable_columns[i], selector);
}
init_rows = init_rows - selector.size();
total_rows = total_rows + selector.size();
selector.clear();
}
void append_whole_block(vectorized::Block* input_block, const RowDescriptor& row_desc) {
auto empty_block = Block::create_unique(VectorizedUtils::create_empty_block(row_desc));
empty_block->swap(*input_block);
blocks.emplace_back(std::move(empty_block));
}
bool reach_limit() {
return init_rows <= 0 || blocks.back()->bytes() > INITIAL_BUFFERED_BLOCK_BYTES;
}
size_t get_total_rows() const { return total_rows; }
IColumn::Selector selector;
std::vector<std::unique_ptr<Block>> blocks;
size_t total_rows = 0;
int init_rows = 4096;
};
using PartitionDataPtr = PartitionBlocks*;
using PartitionDataWithStringKey = PHHashMap<StringRef, PartitionDataPtr, DefaultHash<StringRef>>;
using PartitionDataWithShortStringKey = StringHashMap<PartitionDataPtr>;
using PartitionDataWithUInt32Key = PHHashMap<UInt32, PartitionDataPtr, HashCRC32<UInt32>>;
template <typename TData>
struct PartitionMethodSerialized {
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
using Iterator = typename Data::iterator;
Data data;
Iterator iterator;
bool inited = false;
std::vector<StringRef> keys;
size_t keys_memory_usage = 0;
PartitionMethodSerialized() : _serialized_key_buffer_size(0), _serialized_key_buffer(nullptr) {}
using State = ColumnsHashing::HashMethodSerialized<typename Data::value_type, Mapped, true>;
template <typename Other>
explicit PartitionMethodSerialized(const Other& other) : data(other.data) {}
size_t serialize_keys(const ColumnRawPtrs& key_columns, size_t num_rows) {
if (keys.size() < num_rows) {
keys.resize(num_rows);
}
size_t max_one_row_byte_size = 0;
for (const auto& column : key_columns) {
max_one_row_byte_size += column->get_max_row_byte_size();
}
size_t total_bytes = max_one_row_byte_size * num_rows;
if (total_bytes > SERIALIZE_KEYS_MEM_LIMIT_IN_BYTES) {
// reach mem limit, don't serialize in batch
// for simplicity, we just create a new arena here.
_arena.reset(new Arena());
size_t keys_size = key_columns.size();
for (size_t i = 0; i < num_rows; ++i) {
keys[i] = serialize_keys_to_pool_contiguous(i, keys_size, key_columns, *_arena);
}
keys_memory_usage = _arena->size();
} else {
_arena.reset();
if (total_bytes > _serialized_key_buffer_size) {
_serialized_key_buffer_size = total_bytes;
_serialize_key_arena.reset(new Arena());
_serialized_key_buffer = reinterpret_cast<uint8_t*>(
_serialize_key_arena->alloc(_serialized_key_buffer_size));
}
for (size_t i = 0; i < num_rows; ++i) {
keys[i].data =
reinterpret_cast<char*>(_serialized_key_buffer + i * max_one_row_byte_size);
keys[i].size = 0;
}
for (const auto& column : key_columns) {
column->serialize_vec(keys, num_rows, max_one_row_byte_size);
}
keys_memory_usage = _serialized_key_buffer_size;
}
return max_one_row_byte_size;
}
private:
size_t _serialized_key_buffer_size;
uint8_t* _serialized_key_buffer;
std::unique_ptr<Arena> _serialize_key_arena;
std::unique_ptr<Arena> _arena;
static constexpr size_t SERIALIZE_KEYS_MEM_LIMIT_IN_BYTES = 16 * 1024 * 1024; // 16M
};
//for string
template <typename TData>
struct PartitionMethodStringNoCache {
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
using Iterator = typename Data::iterator;
Data data;
Iterator iterator;
bool inited = false;
PartitionMethodStringNoCache() = default;
explicit PartitionMethodStringNoCache(size_t size_hint) : data(size_hint) {}
template <typename Other>
explicit PartitionMethodStringNoCache(const Other& other) : data(other.data) {}
using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped, true, false>;
static const bool low_cardinality_optimization = false;
};
/// For the case where there is one numeric key.
/// FieldType is UInt8/16/32/64 for any type with corresponding bit width.
template <typename FieldType, typename TData, bool consecutive_keys_optimization = false>
struct PartitionMethodOneNumber {
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
using Iterator = typename Data::iterator;
Data data;
Iterator iterator;
bool inited = false;
PartitionMethodOneNumber() = default;
template <typename Other>
PartitionMethodOneNumber(const Other& other) : data(other.data) {}
/// To use one `Method` in different threads, use different `State`.
using State = ColumnsHashing::HashMethodOneNumber<typename Data::value_type, Mapped, FieldType,
consecutive_keys_optimization>;
};
template <typename Base>
struct PartitionDataWithNullKey : public Base {
using Base::Base;
bool& has_null_key_data() { return has_null_key; }
PartitionDataPtr& get_null_key_data() { return null_key_data; }
bool has_null_key_data() const { return has_null_key; }
PartitionDataPtr get_null_key_data() const { return null_key_data; }
size_t size() const { return Base::size() + (has_null_key ? 1 : 0); }
bool empty() const { return Base::empty() && !has_null_key; }
void clear() {
Base::clear();
has_null_key = false;
}
void clear_and_shrink() {
Base::clear_and_shrink();
has_null_key = false;
}
private:
bool has_null_key = false;
PartitionDataPtr null_key_data = nullptr;
};
template <typename SingleColumnMethod>
struct PartitionMethodSingleNullableColumn : public SingleColumnMethod {
using Base = SingleColumnMethod;
using BaseState = typename Base::State;
using Data = typename Base::Data;
using Key = typename Base::Key;
using Mapped = typename Base::Mapped;
using Base::data;
PartitionMethodSingleNullableColumn() = default;
template <typename Other>
explicit PartitionMethodSingleNullableColumn(const Other& other) : Base(other) {}
using State = ColumnsHashing::HashMethodSingleLowNullableColumn<BaseState, Mapped, true>;
};
using PartitionedMethodVariants =
std::variant<PartitionMethodSerialized<PartitionDataWithStringKey>,
PartitionMethodOneNumber<UInt32, PartitionDataWithUInt32Key>,
PartitionMethodSingleNullableColumn<PartitionMethodOneNumber<
UInt32, PartitionDataWithNullKey<PartitionDataWithUInt32Key>>>,
PartitionMethodStringNoCache<PartitionDataWithShortStringKey>,
PartitionMethodSingleNullableColumn<PartitionMethodStringNoCache<
PartitionDataWithNullKey<PartitionDataWithShortStringKey>>>>;
struct PartitionedHashMapVariants {
PartitionedHashMapVariants() = default;
PartitionedHashMapVariants(const PartitionedHashMapVariants&) = delete;
PartitionedHashMapVariants& operator=(const PartitionedHashMapVariants&) = delete;
PartitionedMethodVariants _partition_method_variant;
enum class Type {
EMPTY = 0,
serialized,
int8_key,
int16_key,
int32_key,
int64_key,
int128_key,
int64_keys,
int128_keys,
int256_keys,
string_key,
};
Type _type = Type::EMPTY;
void init(Type type, bool is_nullable = false) {
_type = type;
switch (_type) {
case Type::serialized:
_partition_method_variant
.emplace<PartitionMethodSerialized<PartitionDataWithStringKey>>();
break;
case Type::int32_key:
if (is_nullable) {
_partition_method_variant
.emplace<PartitionMethodSingleNullableColumn<PartitionMethodOneNumber<
UInt32, PartitionDataWithNullKey<PartitionDataWithUInt32Key>>>>();
} else {
_partition_method_variant
.emplace<PartitionMethodOneNumber<UInt32, PartitionDataWithUInt32Key>>();
}
break;
case Type::string_key:
if (is_nullable) {
_partition_method_variant
.emplace<PartitionMethodSingleNullableColumn<PartitionMethodStringNoCache<
PartitionDataWithNullKey<PartitionDataWithShortStringKey>>>>();
} else {
_partition_method_variant
.emplace<PartitionMethodStringNoCache<PartitionDataWithShortStringKey>>();
}
break;
default:
DCHECK(false) << "Do not have a rigth partition by data type";
}
}
};
class VExprContext;
class VPartitionSortNode : public ExecNode {
public:
VPartitionSortNode(ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs);
~VPartitionSortNode() override = default;
Status init(const TPlanNode& tnode, RuntimeState* state = nullptr) override;
Status prepare(RuntimeState* state) override;
Status alloc_resource(RuntimeState* state) override;
Status open(RuntimeState* state) override;
void release_resource(RuntimeState* state) override;
Status get_next(RuntimeState* state, Block* block, bool* eos) override;
Status close(RuntimeState* state) override;
Status pull(RuntimeState* state, vectorized::Block* output_block, bool* eos) override;
Status sink(RuntimeState* state, vectorized::Block* input_block, bool eos) override;
void debug_profile();
private:
template <typename AggState, typename AggMethod>
void _pre_serialize_key_if_need(AggState& state, AggMethod& agg_method,
const ColumnRawPtrs& key_columns, const size_t num_rows) {
if constexpr (ColumnsHashing::IsPreSerializedKeysHashMethodTraits<AggState>::value) {
(agg_method.serialize_keys(key_columns, num_rows));
state.set_serialized_keys(agg_method.keys.data());
}
}
void _init_hash_method();
Status _split_block_by_partition(vectorized::Block* input_block, int batch_size);
void _emplace_into_hash_table(const ColumnRawPtrs& key_columns,
const vectorized::Block* input_block, int batch_size);
Status get_sorted_block(RuntimeState* state, Block* output_block, bool* eos);
// hash table
std::unique_ptr<PartitionedHashMapVariants> _partitioned_data;
std::unique_ptr<Arena> _agg_arena_pool;
// partition by k1,k2
int _partition_exprs_num = 0;
std::vector<VExprContext*> _partition_expr_ctxs;
std::vector<const IColumn*> _partition_columns;
std::vector<size_t> _partition_key_sz;
std::vector<size_t> _hash_values;
std::vector<std::unique_ptr<PartitionSorter>> _partition_sorts;
std::vector<PartitionDataPtr> _value_places;
// Expressions and parameters used for build _sort_description
VSortExecExprs _vsort_exec_exprs;
std::vector<bool> _is_asc_order;
std::vector<bool> _nulls_first;
TopNAlgorithm::type _top_n_algorithm = TopNAlgorithm::ROW_NUMBER;
bool _has_global_limit = false;
int _num_partition = 0;
int64_t _partition_inner_limit = 0;
int _sort_idx = 0;
std::unique_ptr<SortCursorCmp> _previous_row = nullptr;
std::queue<Block> _blocks_buffer;
int64_t child_input_rows = 0;
RuntimeProfile::Counter* _build_timer;
RuntimeProfile::Counter* _emplace_key_timer;
RuntimeProfile::Counter* _partition_sort_timer;
RuntimeProfile::Counter* _get_sorted_timer;
RuntimeProfile::Counter* _selector_block_timer;
RuntimeProfile::Counter* _hash_table_size_counter;
//only for profile record
std::vector<int> partition_profile_output_rows;
};
} // namespace vectorized
} // namespace doris

View File

@ -57,6 +57,7 @@ enum TPlanNodeType {
FILE_SCAN_NODE,
JDBC_SCAN_NODE,
TEST_EXTERNAL_SCAN_NODE,
PARTITION_SORT_NODE,
}
// phases of an execution node
@ -765,6 +766,19 @@ struct TSortNode {
7: optional bool use_topn_opt
}
enum TopNAlgorithm {
RANK,
DENSE_RANK,
ROW_NUMBER
}
struct TPartitionSortNode {
1: optional list<Exprs.TExpr> partition_exprs
2: optional TSortInfo sort_info
3: optional bool has_global_limit
4: optional TopNAlgorithm top_n_algorithm
5: optional i64 partition_inner_limit
}
enum TAnalyticWindowType {
// Specifies the window as a logical offset
RANGE,
@ -1072,6 +1086,7 @@ struct TPlanNode {
101: optional list<Exprs.TExpr> projections
102: optional Types.TTupleId output_tuple_id
103: optional TPartitionSortNode partition_sort_node
}
// A flattened representation of a tree of PlanNodes, obtained by depth-first