Issue Number: close#16351
Dynamic schema table is a special type of table, it's schema change with loading procedure.Now we implemented this feature mainly for semi-structure data such as JSON, since JSON is schema self-described we could extract schema info from the original documents and inference the final type infomation.This speical table could reduce manual schema change operation and easily import semi-structure data and extends it's schema automatically.
This commit support:
1、Insert + select for struct/map type
2、Json stream load for struct type
3、m[key] function for map type
How to use:
Set the fe config to create table for struct and map type
1、admin set frontend config("enable_struct_type" = "true");
2、admin set frontend config("enable_map_type" = "true");
#16547
Co-authored-by: xy720 <xuyang25@baidu.com>
Co-authored-by: amory <wangqiannan@selectdb.com>
Co-authored-by: cambyzju <zhuxiaoli01@baidu.com>
Co-authored-by: hucheng01 <hucheng01@baidu.com>
forbidden to_quantile_state temporary to avoid core dump. waiting for [Feature] support QuantileState in vectorized engine #15868 get the ball rolling on implementation.
remove json functions code
remove string functions code
remove math functions code
move MatchPredicate to olap since it is only used in storage predicate process
remove some code in tuple, Tuple structure should be removed in the future.
remove many code in collection value structure, they are useless
* [feature-wip](inverted index)inverted index api: reader
* [feature-wip](inverted index) Fulltext query syntax with MATCH/MATCH_ALL/MATCH_ALL
* [feature-wip](inverted index) Adapt to index meta
* [enhance] add more metrics
* [enhance] add fulltext match query check for column type and index parser
* [feature-wip](inverted index) Support apply inverted index in compound predicate which except leaf node of and node
test data: https://data.gharchive.org/2020-11-13-18.json.gz, 2GB, 197696 lines
before: String 13s vs. JSONB 28s
after: String 13s vs. JSONB 16s
**NOTICE: simdjson need to be patched since BOOL is conflicted with a macro BOOL defined in odbc sqltypes.h**
Current bitmap index only can apply pushed down predicates which in AND conditions. When predicates in OR conditions and other complex compound conditions, it will not be pushed down to the storage layer, this leads to read more data.
Based on that situation, this pr will do:
1. this pr in order to support bitmap index apply compound predicates, query sql like:
select * from tb where a > 'hello' or b < 100;
select * from tb where a > 'hello' or b < 100 or c > 'ok';
select * from tb where (a > 'hello' or b <100) and (a < 'world' or b > 200);
select * from tb where (not a> 'hello') or b < 100;
...
above sql,column a and b and c has created bitmap_index.
2. this optimization can reduce reading data by index
3. set config enable_index_apply_compound_predicates to use this optimization