832 lines
29 KiB
C++
832 lines
29 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "exprs/math_functions.h"
|
|
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#include <math.h>
|
|
|
|
#include "common/compiler_util.h"
|
|
#include "exprs/anyval_util.h"
|
|
#include "exprs/expr.h"
|
|
#include "runtime/tuple_row.h"
|
|
#include "runtime/decimal_value.h"
|
|
#include "util/string_parser.hpp"
|
|
|
|
namespace doris {
|
|
|
|
const char* MathFunctions::_s_alphanumeric_chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
|
|
|
const double log_10[] = {
|
|
1e000, 1e001, 1e002, 1e003, 1e004, 1e005, 1e006, 1e007, 1e008, 1e009,
|
|
1e010, 1e011, 1e012, 1e013, 1e014, 1e015, 1e016, 1e017, 1e018, 1e019,
|
|
1e020, 1e021, 1e022, 1e023, 1e024, 1e025, 1e026, 1e027, 1e028, 1e029,
|
|
1e030, 1e031, 1e032, 1e033, 1e034, 1e035, 1e036, 1e037, 1e038, 1e039,
|
|
1e040, 1e041, 1e042, 1e043, 1e044, 1e045, 1e046, 1e047, 1e048, 1e049,
|
|
1e050, 1e051, 1e052, 1e053, 1e054, 1e055, 1e056, 1e057, 1e058, 1e059,
|
|
1e060, 1e061, 1e062, 1e063, 1e064, 1e065, 1e066, 1e067, 1e068, 1e069,
|
|
1e070, 1e071, 1e072, 1e073, 1e074, 1e075, 1e076, 1e077, 1e078, 1e079,
|
|
1e080, 1e081, 1e082, 1e083, 1e084, 1e085, 1e086, 1e087, 1e088, 1e089,
|
|
1e090, 1e091, 1e092, 1e093, 1e094, 1e095, 1e096, 1e097, 1e098, 1e099,
|
|
1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109,
|
|
1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119,
|
|
1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129,
|
|
1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139,
|
|
1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149,
|
|
1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159,
|
|
1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168, 1e169,
|
|
1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179,
|
|
1e180, 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189,
|
|
1e190, 1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199,
|
|
1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208, 1e209,
|
|
1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217, 1e218, 1e219,
|
|
1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228, 1e229,
|
|
1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239,
|
|
1e240, 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249,
|
|
1e250, 1e251, 1e252, 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259,
|
|
1e260, 1e261, 1e262, 1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269,
|
|
1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279,
|
|
1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289,
|
|
1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299,
|
|
1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308
|
|
};
|
|
|
|
#define ARRAY_ELEMENTS(A) ((uint64_t) (sizeof(A)/sizeof(A[0])))
|
|
|
|
static double my_double_round(double value, int64_t dec, bool dec_unsigned, bool truncate) {
|
|
bool dec_negative = (dec < 0) && !dec_unsigned;
|
|
uint64_t abs_dec = dec_negative ? -dec : dec;
|
|
/*
|
|
tmp2 is here to avoid return the value with 80 bit precision
|
|
This will fix that the test round(0.1,1) = round(0.1,1) is true
|
|
Tagging with volatile is no guarantee, it may still be optimized away...
|
|
*/
|
|
volatile double tmp2 = 0.0;
|
|
|
|
double tmp = (abs_dec < ARRAY_ELEMENTS(log_10) ?
|
|
log_10[abs_dec] : std::pow(10.0, (double)abs_dec));
|
|
|
|
// Pre-compute these, to avoid optimizing away e.g. 'floor(v/tmp) * tmp'.
|
|
volatile double value_div_tmp = value / tmp;
|
|
volatile double value_mul_tmp = value * tmp;
|
|
|
|
if (dec_negative && std::isinf(tmp)) {
|
|
tmp2 = 0.0;
|
|
} else if (!dec_negative && std::isinf(value_mul_tmp)) {
|
|
tmp2 = value;
|
|
} else if (truncate) {
|
|
if (value >= 0.0) {
|
|
tmp2 = dec < 0 ? std::floor(value_div_tmp) * tmp : std::floor(value_mul_tmp) / tmp;
|
|
} else {
|
|
tmp2 = dec < 0 ? std::ceil(value_div_tmp) * tmp : std::ceil(value_mul_tmp) / tmp;
|
|
}
|
|
} else {
|
|
tmp2 = dec < 0 ? std::rint(value_div_tmp) * tmp : std::rint(value_mul_tmp) / tmp;
|
|
}
|
|
|
|
return tmp2;
|
|
}
|
|
|
|
void MathFunctions::init() {
|
|
}
|
|
|
|
DoubleVal MathFunctions::pi(FunctionContext* ctx) {
|
|
return DoubleVal(M_PI);
|
|
}
|
|
|
|
DoubleVal MathFunctions::e(FunctionContext* ctx) {
|
|
return DoubleVal(M_E);
|
|
}
|
|
|
|
// Generates a UDF that always calls FN() on the input val and returns it.
|
|
#define ONE_ARG_MATH_FN(NAME, RET_TYPE, INPUT_TYPE, FN) \
|
|
RET_TYPE MathFunctions::NAME(FunctionContext* ctx, const INPUT_TYPE& v) { \
|
|
if (v.is_null) return RET_TYPE::null(); \
|
|
return RET_TYPE(FN(v.val)); \
|
|
}
|
|
|
|
ONE_ARG_MATH_FN(abs, DoubleVal, DoubleVal, std::fabs);
|
|
ONE_ARG_MATH_FN(sin, DoubleVal, DoubleVal, std::sin);
|
|
ONE_ARG_MATH_FN(asin, DoubleVal, DoubleVal, std::asin);
|
|
ONE_ARG_MATH_FN(cos, DoubleVal, DoubleVal, std::cos);
|
|
ONE_ARG_MATH_FN(acos, DoubleVal, DoubleVal, std::acos);
|
|
ONE_ARG_MATH_FN(tan, DoubleVal, DoubleVal, std::tan);
|
|
ONE_ARG_MATH_FN(atan, DoubleVal, DoubleVal, std::atan);
|
|
ONE_ARG_MATH_FN(sqrt, DoubleVal, DoubleVal, std::sqrt);
|
|
ONE_ARG_MATH_FN(ceil, BigIntVal, DoubleVal, std::ceil);
|
|
ONE_ARG_MATH_FN(floor, BigIntVal, DoubleVal, std::floor);
|
|
ONE_ARG_MATH_FN(ln, DoubleVal, DoubleVal, std::log);
|
|
ONE_ARG_MATH_FN(log10, DoubleVal, DoubleVal, std::log10);
|
|
ONE_ARG_MATH_FN(exp, DoubleVal, DoubleVal, std::exp);
|
|
|
|
FloatVal MathFunctions::sign(
|
|
FunctionContext* ctx, const DoubleVal& v) {
|
|
if (v.is_null) {
|
|
return FloatVal::null();
|
|
}
|
|
return FloatVal((v.val > 0) ? 1.0f : ((v.val < 0) ? -1.0f : 0.0f));
|
|
}
|
|
|
|
DoubleVal MathFunctions::radians(
|
|
FunctionContext* ctx, const DoubleVal& v) {
|
|
if (v.is_null) {
|
|
return v;
|
|
}
|
|
return DoubleVal(v.val * M_PI / 180.0);
|
|
}
|
|
|
|
DoubleVal MathFunctions::degrees(
|
|
FunctionContext* ctx, const DoubleVal& v) {
|
|
if (v.is_null) {
|
|
return v;
|
|
}
|
|
return DoubleVal(v.val * 180.0 / M_PI);
|
|
}
|
|
|
|
BigIntVal MathFunctions::round(
|
|
FunctionContext* ctx, const DoubleVal& v) {
|
|
if (v.is_null) {
|
|
return BigIntVal::null();
|
|
}
|
|
return BigIntVal(static_cast<int64_t>(v.val + ((v.val < 0) ? -0.5 : 0.5)));
|
|
}
|
|
|
|
DoubleVal MathFunctions::round_up_to(
|
|
FunctionContext* ctx, const DoubleVal& v, const IntVal& scale) {
|
|
if (v.is_null || scale.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
return DoubleVal(my_double_round(v.val, scale.val, false, false));
|
|
}
|
|
|
|
DoubleVal MathFunctions::truncate(
|
|
FunctionContext* ctx, const DoubleVal& v, const IntVal& scale) {
|
|
if (v.is_null || scale.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
return DoubleVal(my_double_round(v.val, scale.val, false, true));
|
|
}
|
|
|
|
DoubleVal MathFunctions::log2(
|
|
FunctionContext* ctx, const DoubleVal& v) {
|
|
if (v.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
return DoubleVal(std::log(v.val) / std::log(2.0));
|
|
}
|
|
|
|
const double EPSILON = 1e-9;
|
|
DoubleVal MathFunctions::log(
|
|
FunctionContext* ctx, const DoubleVal& base, const DoubleVal& v) {
|
|
if (base.is_null || v.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
if (base.val <= 0 || std::fabs(base.val - 1.0) < EPSILON || v.val <= 0.0) {
|
|
return DoubleVal::null();
|
|
}
|
|
|
|
return DoubleVal(std::log(v.val) / std::log(base.val));
|
|
}
|
|
|
|
DoubleVal MathFunctions::pow(
|
|
FunctionContext* ctx, const DoubleVal& base, const DoubleVal& exp) {
|
|
if (base.is_null || exp.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
return DoubleVal(std::pow(base.val, exp.val));
|
|
}
|
|
|
|
void MathFunctions::rand_prepare(
|
|
FunctionContext* ctx, FunctionContext::FunctionStateScope scope) {
|
|
if (scope == FunctionContext::THREAD_LOCAL) {
|
|
uint32_t* seed = reinterpret_cast<uint32_t*>(ctx->allocate(sizeof(uint32_t)));
|
|
ctx->set_function_state(scope, seed);
|
|
if (ctx->get_num_args() == 1) {
|
|
// This is a call to RandSeed, initialize the seed
|
|
// TODO: should we support non-constant seed?
|
|
if (!ctx->is_arg_constant(0)) {
|
|
ctx->set_error("Seed argument to rand() must be constant");
|
|
return;
|
|
}
|
|
BigIntVal* seed_arg = static_cast<BigIntVal*>(ctx->get_constant_arg(0));
|
|
if (seed_arg->is_null) {
|
|
seed = NULL;
|
|
} else {
|
|
*seed = seed_arg->val;
|
|
}
|
|
} else {
|
|
// This is a call to Rand, initialize seed to 0
|
|
// TODO: can we change this behavior? This is stupid.
|
|
*seed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
DoubleVal MathFunctions::rand(FunctionContext* ctx) {
|
|
uint32_t* seed = reinterpret_cast<uint32_t*>(
|
|
ctx->get_function_state(FunctionContext::THREAD_LOCAL));
|
|
*seed = ::rand_r(seed);
|
|
// Normalize to [0,1].
|
|
return DoubleVal(static_cast<double>(*seed) / RAND_MAX);
|
|
}
|
|
|
|
DoubleVal MathFunctions::rand_seed(FunctionContext* ctx, const BigIntVal& seed) {
|
|
if (seed.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
return rand(ctx);
|
|
}
|
|
|
|
StringVal MathFunctions::bin(FunctionContext* ctx, const BigIntVal& v) {
|
|
if (v.is_null) {
|
|
return StringVal::null();
|
|
}
|
|
// Cast to an unsigned integer because it is compiler dependent
|
|
// whether the sign bit will be shifted like a regular bit.
|
|
// (logical vs. arithmetic shift for signed numbers)
|
|
uint64_t n = static_cast<uint64_t>(v.val);
|
|
const size_t max_bits = sizeof(uint64_t) * 8;
|
|
char result[max_bits];
|
|
uint32_t index = max_bits;
|
|
do {
|
|
result[--index] = '0' + (n & 1);
|
|
} while (n >>= 1);
|
|
return AnyValUtil::from_buffer_temp(ctx, result + index, max_bits - index);
|
|
}
|
|
|
|
StringVal MathFunctions::hex_int(FunctionContext* ctx, const BigIntVal& v) {
|
|
if (v.is_null) {
|
|
return StringVal::null();
|
|
}
|
|
// TODO: this is probably unreasonably slow
|
|
std::stringstream ss;
|
|
ss << std::hex << std::uppercase << v.val;
|
|
return AnyValUtil::from_string_temp(ctx, ss.str());
|
|
}
|
|
|
|
StringVal MathFunctions::hex_string(FunctionContext* ctx, const StringVal& s) {
|
|
if (s.is_null) {
|
|
return StringVal::null();
|
|
}
|
|
std::stringstream ss;
|
|
ss << std::hex << std::uppercase << std::setfill('0');
|
|
for (int i = 0; i < s.len; ++i) {
|
|
// setw is not sticky. stringstream only converts integral values,
|
|
// so a cast to int is required, but only convert the least significant byte to hex.
|
|
ss << std::setw(2) << (static_cast<int32_t>(s.ptr[i]) & 0xFF);
|
|
}
|
|
return AnyValUtil::from_string_temp(ctx, ss.str());
|
|
}
|
|
|
|
StringVal MathFunctions::unhex(FunctionContext* ctx, const StringVal& s) {
|
|
if (s.is_null) {
|
|
return StringVal::null();
|
|
}
|
|
// For uneven number of chars return empty string like Hive does.
|
|
if (s.len % 2 != 0) {
|
|
return StringVal();
|
|
}
|
|
|
|
int result_len = s.len / 2;
|
|
char result[result_len];
|
|
int res_index = 0;
|
|
int s_index = 0;
|
|
while (s_index < s.len) {
|
|
char c = 0;
|
|
for (int j = 0; j < 2; ++j, ++s_index) {
|
|
switch (s.ptr[s_index]) {
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
c += (s.ptr[s_index] - '0') * ((j == 0) ? 16 : 1);
|
|
break;
|
|
case 'A':
|
|
case 'B':
|
|
case 'C':
|
|
case 'D':
|
|
case 'E':
|
|
case 'F':
|
|
// Map to decimal values [10, 15]
|
|
c += (s.ptr[s_index] - 'A' + 10) * ((j == 0) ? 16 : 1);
|
|
break;
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'e':
|
|
case 'f':
|
|
// Map to decimal [10, 15]
|
|
c += (s.ptr[s_index] - 'a' + 10) * ((j == 0) ? 16 : 1);
|
|
break;
|
|
default:
|
|
// Character not in hex alphabet, return empty string.
|
|
return StringVal();
|
|
}
|
|
}
|
|
result[res_index] = c;
|
|
++res_index;
|
|
}
|
|
return AnyValUtil::from_buffer_temp(ctx, result, result_len);
|
|
}
|
|
|
|
StringVal MathFunctions::conv_int(
|
|
FunctionContext* ctx, const BigIntVal& num,
|
|
const TinyIntVal& src_base, const TinyIntVal& dest_base) {
|
|
if (num.is_null || src_base.is_null || dest_base.is_null) {
|
|
return StringVal::null();
|
|
}
|
|
// As in MySQL and Hive, min base is 2 and max base is 36.
|
|
// (36 is max base representable by alphanumeric chars)
|
|
// If a negative target base is given, num should be interpreted in 2's complement.
|
|
if (std::abs(src_base.val) < MIN_BASE || std::abs(src_base.val) > MAX_BASE
|
|
|| std::abs(dest_base.val) < MIN_BASE || std::abs(dest_base.val) > MAX_BASE) {
|
|
// Return NULL like Hive does.
|
|
return StringVal::null();
|
|
}
|
|
// Invalid input.
|
|
if (src_base.val < 0 && num.val >= 0) {
|
|
return StringVal::null();
|
|
}
|
|
int64_t decimal_num = num.val;
|
|
if (src_base.val != 10) {
|
|
// Convert src_num representing a number in src_base but encoded in decimal
|
|
// into its actual decimal number.
|
|
if (!decimal_in_base_to_decimal(num.val, src_base.val, &decimal_num)) {
|
|
// Handle overflow, setting decimal_num appropriately.
|
|
handle_parse_result(dest_base.val, &decimal_num, StringParser::PARSE_OVERFLOW);
|
|
}
|
|
}
|
|
return decimal_to_base(ctx, decimal_num, dest_base.val);
|
|
}
|
|
|
|
StringVal MathFunctions::conv_string(
|
|
FunctionContext* ctx, const StringVal& num_str,
|
|
const TinyIntVal& src_base, const TinyIntVal& dest_base) {
|
|
if (num_str.is_null || src_base.is_null || dest_base.is_null) {
|
|
return StringVal::null();
|
|
}
|
|
// As in MySQL and Hive, min base is 2 and max base is 36.
|
|
// (36 is max base representable by alphanumeric chars)
|
|
// If a negative target base is given, num should be interpreted in 2's complement.
|
|
if (std::abs(src_base.val) < MIN_BASE || std::abs(src_base.val) > MAX_BASE
|
|
|| std::abs(dest_base.val) < MIN_BASE || std::abs(dest_base.val) > MAX_BASE) {
|
|
// Return NULL like Hive does.
|
|
return StringVal::null();
|
|
}
|
|
// Convert digits in num_str in src_base to decimal.
|
|
StringParser::ParseResult parse_res;
|
|
int64_t decimal_num = StringParser::string_to_int<int64_t>(
|
|
reinterpret_cast<char*>(num_str.ptr), num_str.len, src_base.val, &parse_res);
|
|
if (src_base.val < 0 && decimal_num >= 0) {
|
|
// Invalid input.
|
|
return StringVal::null();
|
|
}
|
|
if (!handle_parse_result(dest_base.val, &decimal_num, parse_res)) {
|
|
// Return 0 for invalid input strings like Hive does.
|
|
return StringVal(reinterpret_cast<uint8_t*>(const_cast<char*>("0")), 1);
|
|
}
|
|
return decimal_to_base(ctx, decimal_num, dest_base.val);
|
|
}
|
|
|
|
StringVal MathFunctions::decimal_to_base(
|
|
FunctionContext* ctx, int64_t src_num, int8_t dest_base) {
|
|
// Max number of digits of any base (base 2 gives max digits), plus sign.
|
|
const size_t max_digits = sizeof(uint64_t) * 8 + 1;
|
|
char buf[max_digits];
|
|
int32_t result_len = 0;
|
|
int32_t buf_index = max_digits - 1;
|
|
uint64_t temp_num;
|
|
if (dest_base < 0) {
|
|
// Dest base is negative, treat src_num as signed.
|
|
temp_num = std::abs(src_num);
|
|
} else {
|
|
// Dest base is positive. We must interpret src_num in 2's complement.
|
|
// Convert to an unsigned int to properly deal with 2's complement conversion.
|
|
temp_num = static_cast<uint64_t>(src_num);
|
|
}
|
|
int abs_base = std::abs(dest_base);
|
|
do {
|
|
buf[buf_index] = _s_alphanumeric_chars[temp_num % abs_base];
|
|
temp_num /= abs_base;
|
|
--buf_index;
|
|
++result_len;
|
|
} while (temp_num > 0);
|
|
// Add optional sign.
|
|
if (src_num < 0 && dest_base < 0) {
|
|
buf[buf_index] = '-';
|
|
++result_len;
|
|
}
|
|
return AnyValUtil::from_buffer_temp(ctx, buf + max_digits - result_len, result_len);
|
|
}
|
|
|
|
bool MathFunctions::decimal_in_base_to_decimal(
|
|
int64_t src_num, int8_t src_base, int64_t* result) {
|
|
uint64_t temp_num = std::abs(src_num);
|
|
int32_t place = 1;
|
|
*result = 0;
|
|
do {
|
|
int32_t digit = temp_num % 10;
|
|
// Reset result if digit is not representable in src_base.
|
|
if (digit >= src_base) {
|
|
*result = 0;
|
|
place = 1;
|
|
} else {
|
|
*result += digit * place;
|
|
place *= src_base;
|
|
// Overflow.
|
|
if (UNLIKELY(*result < digit)) {
|
|
return false;
|
|
}
|
|
}
|
|
temp_num /= 10;
|
|
} while (temp_num > 0);
|
|
*result = (src_num < 0) ? -(*result) : *result;
|
|
return true;
|
|
}
|
|
|
|
bool MathFunctions::handle_parse_result(
|
|
int8_t dest_base, int64_t* num, StringParser::ParseResult parse_res) {
|
|
// On overflow set special value depending on dest_base.
|
|
// This is consistent with Hive and MySQL's behavior.
|
|
if (parse_res == StringParser::PARSE_OVERFLOW) {
|
|
if (dest_base < 0) {
|
|
*num = -1;
|
|
} else {
|
|
*num = std::numeric_limits<uint64_t>::max();
|
|
}
|
|
} else if (parse_res == StringParser::PARSE_FAILURE) {
|
|
// Some other error condition.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BigIntVal MathFunctions::pmod_bigint(
|
|
FunctionContext* ctx, const BigIntVal& a, const BigIntVal& b) {
|
|
if (a.is_null || b.is_null) {
|
|
return BigIntVal::null();
|
|
}
|
|
return BigIntVal(((a.val % b.val) + b.val) % b.val);
|
|
}
|
|
|
|
DoubleVal MathFunctions::pmod_double(
|
|
FunctionContext* ctx, const DoubleVal& a, const DoubleVal& b) {
|
|
if (a.is_null || b.is_null) {
|
|
return DoubleVal::null();
|
|
}
|
|
return DoubleVal(fmod(fmod(a.val, b.val) + b.val, b.val));
|
|
}
|
|
|
|
FloatVal MathFunctions::fmod_float(
|
|
FunctionContext* ctx, const FloatVal& a, const FloatVal& b) {
|
|
if (a.is_null || b.is_null || b.val == 0) {
|
|
return FloatVal::null();
|
|
}
|
|
return FloatVal(fmodf(a.val, b.val));
|
|
}
|
|
|
|
DoubleVal MathFunctions::fmod_double(
|
|
FunctionContext* ctx, const DoubleVal& a, const DoubleVal& b) {
|
|
if (a.is_null || b.is_null || b.val == 0) {
|
|
return DoubleVal::null();
|
|
}
|
|
return DoubleVal(fmod(a.val, b.val));
|
|
}
|
|
|
|
BigIntVal MathFunctions::positive_bigint(
|
|
FunctionContext* ctx, const BigIntVal& val) {
|
|
return val;
|
|
}
|
|
|
|
DoubleVal MathFunctions::positive_double(
|
|
FunctionContext* ctx, const DoubleVal& val) {
|
|
return val;
|
|
}
|
|
|
|
DecimalVal MathFunctions::positive_decimal(
|
|
FunctionContext* ctx, const DecimalVal& val) {
|
|
return val;
|
|
}
|
|
|
|
BigIntVal MathFunctions::negative_bigint(
|
|
FunctionContext* ctx, const BigIntVal& val) {
|
|
if (val.is_null) {
|
|
return val;
|
|
}
|
|
return BigIntVal(-val.val);
|
|
}
|
|
|
|
DoubleVal MathFunctions::negative_double(
|
|
FunctionContext* ctx, const DoubleVal& val) {
|
|
if (val.is_null) {
|
|
return val;
|
|
}
|
|
return DoubleVal(-val.val);
|
|
}
|
|
|
|
DecimalVal MathFunctions::negative_decimal(
|
|
FunctionContext* ctx, const DecimalVal& val) {
|
|
if (val.is_null) {
|
|
return val;
|
|
}
|
|
const DecimalValue& dv1 = DecimalValue::from_decimal_val(val);
|
|
LOG(INFO) << dv1.to_string();
|
|
DecimalVal result;
|
|
LOG(INFO) << (-dv1).to_string();
|
|
(-dv1).to_decimal_val(&result);
|
|
return result;
|
|
}
|
|
|
|
#define LEAST_FN(TYPE) \
|
|
TYPE MathFunctions::least(\
|
|
FunctionContext* ctx, int num_args, const TYPE* args) { \
|
|
if (args[0].is_null) return TYPE::null(); \
|
|
int result_idx = 0; \
|
|
for (int i = 1; i < num_args; ++i) { \
|
|
if (args[i].is_null) return TYPE::null(); \
|
|
if (args[i].val < args[result_idx].val) result_idx = i; \
|
|
} \
|
|
return TYPE(args[result_idx].val); \
|
|
}
|
|
|
|
#define LEAST_FNS() \
|
|
LEAST_FN(TinyIntVal); \
|
|
LEAST_FN(SmallIntVal); \
|
|
LEAST_FN(IntVal); \
|
|
LEAST_FN(BigIntVal); \
|
|
LEAST_FN(LargeIntVal); \
|
|
LEAST_FN(FloatVal); \
|
|
LEAST_FN(DoubleVal);
|
|
|
|
LEAST_FNS();
|
|
|
|
#define LEAST_NONNUMERIC_FN(TYPE_NAME, TYPE, DORIS_TYPE) \
|
|
TYPE MathFunctions::least(\
|
|
FunctionContext* ctx, int num_args, const TYPE* args) { \
|
|
if (args[0].is_null) return TYPE::null(); \
|
|
DORIS_TYPE result_val = DORIS_TYPE::from_##TYPE_NAME(args[0]); \
|
|
for (int i = 1; i < num_args; ++i) { \
|
|
if (args[i].is_null) return TYPE::null(); \
|
|
DORIS_TYPE val = DORIS_TYPE::from_##TYPE_NAME(args[i]); \
|
|
if (val < result_val) result_val = val; \
|
|
} \
|
|
TYPE result; \
|
|
result_val.to_##TYPE_NAME(&result); \
|
|
return result; \
|
|
}
|
|
|
|
#define LEAST_NONNUMERIC_FNS() \
|
|
LEAST_NONNUMERIC_FN(string_val, StringVal, StringValue); \
|
|
LEAST_NONNUMERIC_FN(datetime_val, DateTimeVal, DateTimeValue); \
|
|
LEAST_NONNUMERIC_FN(decimal_val, DecimalVal, DecimalValue); \
|
|
|
|
LEAST_NONNUMERIC_FNS();
|
|
|
|
#define GREATEST_FN(TYPE) \
|
|
TYPE MathFunctions::greatest(\
|
|
FunctionContext* ctx, int num_args, const TYPE* args) { \
|
|
if (args[0].is_null) return TYPE::null(); \
|
|
int result_idx = 0; \
|
|
for (int i = 1; i < num_args; ++i) { \
|
|
if (args[i].is_null) return TYPE::null(); \
|
|
if (args[i].val > args[result_idx].val) result_idx = i; \
|
|
} \
|
|
return TYPE(args[result_idx].val); \
|
|
}
|
|
|
|
#define GREATEST_FNS() \
|
|
GREATEST_FN(TinyIntVal); \
|
|
GREATEST_FN(SmallIntVal); \
|
|
GREATEST_FN(IntVal); \
|
|
GREATEST_FN(BigIntVal); \
|
|
GREATEST_FN(LargeIntVal); \
|
|
GREATEST_FN(FloatVal); \
|
|
GREATEST_FN(DoubleVal);
|
|
|
|
GREATEST_FNS();
|
|
|
|
#define GREATEST_NONNUMERIC_FN(TYPE_NAME, TYPE, DORIS_TYPE) \
|
|
TYPE MathFunctions::greatest(\
|
|
FunctionContext* ctx, int num_args, const TYPE* args) { \
|
|
if (args[0].is_null) return TYPE::null(); \
|
|
DORIS_TYPE result_val = DORIS_TYPE::from_##TYPE_NAME(args[0]); \
|
|
for (int i = 1; i < num_args; ++i) { \
|
|
if (args[i].is_null) return TYPE::null(); \
|
|
DORIS_TYPE val = DORIS_TYPE::from_##TYPE_NAME(args[i]); \
|
|
if (val > result_val) result_val = val; \
|
|
} \
|
|
TYPE result; \
|
|
result_val.to_##TYPE_NAME(&result); \
|
|
return result; \
|
|
}
|
|
|
|
#define GREATEST_NONNUMERIC_FNS() \
|
|
GREATEST_NONNUMERIC_FN(string_val, StringVal, StringValue); \
|
|
GREATEST_NONNUMERIC_FN(datetime_val, DateTimeVal, DateTimeValue); \
|
|
GREATEST_NONNUMERIC_FN(decimal_val, DecimalVal, DecimalValue); \
|
|
|
|
GREATEST_NONNUMERIC_FNS();
|
|
|
|
#if 0
|
|
void* MathFunctions::greatest_bigint(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
int64_t* arg = reinterpret_cast<int64_t*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (*arg > *reinterpret_cast<int64_t*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.bigint_val;
|
|
}
|
|
|
|
void* MathFunctions::greatest_double(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
double* arg = reinterpret_cast<double*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (*arg > *reinterpret_cast<double*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.double_val;
|
|
}
|
|
|
|
void* MathFunctions::greatest_decimal(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
DecimalValue* arg = reinterpret_cast<DecimalValue*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
if (*arg > *reinterpret_cast<DecimalValue*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.decimal_val;
|
|
}
|
|
|
|
void* MathFunctions::greatest_string(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
StringValue* arg = reinterpret_cast<StringValue*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
if (*arg > *reinterpret_cast<StringValue*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.string_val;
|
|
}
|
|
|
|
void* MathFunctions::greatest_timestamp(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
DateTimeValue* arg = reinterpret_cast<DateTimeValue*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
if (*arg > *reinterpret_cast<DateTimeValue*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.datetime_val;
|
|
}
|
|
void* MathFunctions::least_bigint(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
int64_t* arg = reinterpret_cast<int64_t*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (*arg < *reinterpret_cast<int64_t*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.bigint_val;
|
|
|
|
}
|
|
|
|
void* MathFunctions::least_double(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
double* arg = reinterpret_cast<double*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (*arg < *reinterpret_cast<double*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.double_val;
|
|
}
|
|
|
|
void* MathFunctions::least_decimal(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
DecimalValue* arg = reinterpret_cast<DecimalValue*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
if (*arg < *reinterpret_cast<DecimalValue*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.decimal_val;
|
|
}
|
|
|
|
void* MathFunctions::least_string(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
StringValue* arg = reinterpret_cast<StringValue*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
if (*arg < *reinterpret_cast<StringValue*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.string_val;
|
|
}
|
|
|
|
void* MathFunctions::least_timestamp(Expr* e, TupleRow* row) {
|
|
DCHECK_GE(e->get_num_children(), 1);
|
|
int32_t num_args = e->get_num_children();
|
|
int result_idx = 0;
|
|
// NOTE: loop index starts at 0, so If frist arg is NULL, we can return early..
|
|
for (int i = 0; i < num_args; ++i) {
|
|
DateTimeValue* arg = reinterpret_cast<DateTimeValue*>(e->children()[i]->get_value(row));
|
|
if (arg == NULL) {
|
|
return NULL;
|
|
}
|
|
if (*arg < *reinterpret_cast<DateTimeValue*>(e->children()[result_idx]->get_value(row))) {
|
|
result_idx = i;
|
|
}
|
|
}
|
|
return &e->children()[result_idx]->_result.datetime_val;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|