Files
doris/be/test/olap/segcompaction_test.cpp
Xinyi Zou d9fe5f7b67 [enhancement](memory) Remove MemPool and replace it with Arena (#17820)
Arena can replace MemPool in most scenarios. Except for memory reuse, MemPool supports reuse of previous memory chunks after clear, but Arena does not.

Some comparisons between MemPool and Arena:

 1. Expansion
     Arena is less than 128M index 2 alloc chunk; more than 128M memory, allocate 128M * n > `size`, n is equal to the minimum value that satisfies the expression;
     MemPool less than 512K index 2 alloc chunk, greater than 512K memory, separately apply for a `size` length chunk
     
     After Arena applied for a chunk larger than 128M last time, the minimum chunk applied for after that is 128M. Does this seem to be a waste of memory? MemPool is also similar. After the chunk of 512K was applied for last time, the minimum chunk of subsequent applications is 512K.

 2. Alignment
     MemPool defaults to 16 alignment, because memtable and other places that use int128 require 16 alignment;
     Arena has no default alignment;

 3. Memory reuse
     Arena only supports `rollback`, which reuses the memory of the current chunk, usually the memory requested last time.
     MemPool supports clear(), all chunks can be reused; or call ReturnPartialAllocation() to roll back the last requested memory; if the last chunk has no memory, search for the most free chunk for allocation

 4. Realloc
     Arena supports realloc contiguous memory; it also supports realloc contiguous memory from any position at the time of the last allocation. The difference between `alloc_continue` and `realloc` is:
         1. Alloc_continue does not need to specify the old size, but the default old size = head->pos - range_start
         2. alloc_continue supports expansion from range_start when additional_bytes is between head and pos, which is equivalent to reusing a part of memory, while realloc completely allocates a new memory
     MemPool does not support realloc, but supports transferring or absorbing chunks between two MemPools

 5. check mem limit
     MemPool checks the mem limit, and Arena checks at the Allocator layer.

 6. Support for ASAN
     Arena does something extra

 7. Error handling
     MemPool supports returning the error message of application failure directly through `Status`, and Arena throws Exception.
Tests that Arena can consider

 1. After the last applied chunk is larger than 128M, the minimum applied chunk is 128M, which seems to waste memory;

 2. Support clear, memory multiplexing;

 3. Increase the large list, alloc the memory larger than 128M, and the size is equal to `size`, so as to avoid the current chunk not being fully used, which is wasteful.

 4. In some cases, it may be possible to allocate backwards to find chunks t
2023-03-29 20:56:49 +08:00

1075 lines
43 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "common/config.h"
#include "env/env_posix.h"
#include "gen_cpp/AgentService_types.h"
#include "gen_cpp/olap_file.pb.h"
#include "io/fs/local_file_system.h"
#include "olap/data_dir.h"
#include "olap/row_cursor.h"
#include "olap/rowset/beta_rowset_reader.h"
#include "olap/rowset/beta_rowset_writer.h"
#include "olap/rowset/rowset_factory.h"
#include "olap/rowset/rowset_reader_context.h"
#include "olap/rowset/rowset_writer.h"
#include "olap/rowset/rowset_writer_context.h"
#include "olap/storage_engine.h"
#include "olap/tablet_meta.h"
#include "olap/tablet_schema.h"
#include "olap/utils.h"
#include "runtime/exec_env.h"
#include "runtime/memory/mem_tracker.h"
#include "util/slice.h"
namespace doris {
using namespace ErrorCode;
static const uint32_t MAX_PATH_LEN = 1024;
StorageEngine* l_engine = nullptr;
static const std::string lTestDir = "./data_test/data/segcompaction_test";
class SegCompactionTest : public testing::Test {
public:
SegCompactionTest() : _data_dir(std::make_unique<DataDir>(lTestDir)) {
_data_dir->update_capacity();
}
void SetUp() {
config::enable_segcompaction = true;
config::tablet_map_shard_size = 1;
config::txn_map_shard_size = 1;
config::txn_shard_size = 1;
char buffer[MAX_PATH_LEN];
EXPECT_NE(getcwd(buffer, MAX_PATH_LEN), nullptr);
config::storage_root_path = std::string(buffer) + "/data_test";
EXPECT_TRUE(io::global_local_filesystem()
->delete_and_create_directory(config::storage_root_path)
.ok());
std::vector<StorePath> paths;
paths.emplace_back(config::storage_root_path, -1);
doris::EngineOptions options;
options.store_paths = paths;
Status s = doris::StorageEngine::open(options, &l_engine);
EXPECT_TRUE(s.ok()) << s.to_string();
ExecEnv* exec_env = doris::ExecEnv::GetInstance();
exec_env->set_storage_engine(l_engine);
EXPECT_TRUE(io::global_local_filesystem()->create_directory(lTestDir).ok());
l_engine->start_bg_threads();
}
void TearDown() {
if (l_engine != nullptr) {
l_engine->stop();
delete l_engine;
l_engine = nullptr;
}
config::enable_segcompaction = false;
}
protected:
OlapReaderStatistics _stats;
bool check_dir(std::vector<std::string>& vec) {
std::vector<std::string> result;
for (const auto& entry : std::filesystem::directory_iterator(lTestDir)) {
result.push_back(std::filesystem::path(entry.path()).filename());
}
LOG(INFO) << "expected ls:" << std::endl;
for (auto& i : vec) {
LOG(INFO) << i;
}
LOG(INFO) << "acutal ls:" << std::endl;
for (auto& i : result) {
LOG(INFO) << i;
}
if (result.size() != vec.size()) {
return false;
} else {
for (auto& i : vec) {
if (std::find(result.begin(), result.end(), i) == result.end()) {
return false;
}
}
}
return true;
}
// (k1 int, k2 varchar(20), k3 int) keys (k1, k2)
void create_tablet_schema(TabletSchemaSPtr tablet_schema, KeysType keystype) {
TabletSchemaPB tablet_schema_pb;
tablet_schema_pb.set_keys_type(keystype);
tablet_schema_pb.set_num_short_key_columns(2);
tablet_schema_pb.set_num_rows_per_row_block(1024);
tablet_schema_pb.set_compress_kind(COMPRESS_NONE);
tablet_schema_pb.set_next_column_unique_id(4);
ColumnPB* column_1 = tablet_schema_pb.add_column();
column_1->set_unique_id(1);
column_1->set_name("k1");
column_1->set_type("INT");
column_1->set_is_key(true);
column_1->set_length(4);
column_1->set_index_length(4);
column_1->set_is_nullable(true);
column_1->set_is_bf_column(false);
ColumnPB* column_2 = tablet_schema_pb.add_column();
column_2->set_unique_id(2);
column_2->set_name("k2");
column_2->set_type(
"INT"); // TODO change to varchar(20) when dict encoding for string is supported
column_2->set_length(4);
column_2->set_index_length(4);
column_2->set_is_nullable(true);
column_2->set_is_key(true);
column_2->set_is_nullable(true);
column_2->set_is_bf_column(false);
ColumnPB* column_3 = tablet_schema_pb.add_column();
column_3->set_unique_id(3);
column_3->set_name("v1");
column_3->set_type("INT");
column_3->set_length(4);
column_3->set_is_key(false);
column_3->set_is_nullable(false);
column_3->set_is_bf_column(false);
column_3->set_aggregation("SUM");
tablet_schema->init_from_pb(tablet_schema_pb);
}
// use different id to avoid conflict
void create_rowset_writer_context(int64_t id, TabletSchemaSPtr tablet_schema,
RowsetWriterContext* rowset_writer_context) {
RowsetId rowset_id;
rowset_id.init(id);
// rowset_writer_context->data_dir = _data_dir.get();
rowset_writer_context->rowset_id = rowset_id;
rowset_writer_context->tablet_id = 12345;
rowset_writer_context->tablet_schema_hash = 1111;
rowset_writer_context->partition_id = 10;
rowset_writer_context->rowset_type = BETA_ROWSET;
rowset_writer_context->rowset_dir = lTestDir;
rowset_writer_context->rowset_state = VISIBLE;
rowset_writer_context->tablet_schema = tablet_schema;
rowset_writer_context->version.first = 10;
rowset_writer_context->version.second = 10;
#if 0
TCreateTabletReq req;
req.table_id =
req.tablet_id =
req.tablet_scheme =
req.partition_id =
l_engine->create_tablet(req);
rowset_writer_context->tablet = l_engine->tablet_manager()->get_tablet(TTabletId tablet_id);
#endif
std::shared_ptr<DataDir> data_dir = std::make_shared<DataDir>(lTestDir);
TabletMetaSharedPtr tablet_meta = std::make_shared<TabletMeta>();
tablet_meta->_tablet_id = 1;
tablet_meta->_schema = tablet_schema;
auto tablet = std::make_shared<Tablet>(tablet_meta, data_dir.get(), "test_str");
char* tmp_str = (char*)malloc(20);
strncpy(tmp_str, "test_tablet_name", 20);
tablet->_full_name = tmp_str;
// tablet->key
rowset_writer_context->tablet = tablet;
}
void create_and_init_rowset_reader(Rowset* rowset, RowsetReaderContext& context,
RowsetReaderSharedPtr* result) {
auto s = rowset->create_reader(result);
EXPECT_EQ(Status::OK(), s);
EXPECT_TRUE(*result != nullptr);
s = (*result)->init(&context);
EXPECT_EQ(Status::OK(), s);
}
private:
std::unique_ptr<DataDir> _data_dir;
};
TEST_F(SegCompactionTest, SegCompactionThenRead) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
const int num_segments = 15;
const uint32_t rows_per_segment = 4096;
config::segcompaction_small_threshold = 6000; // set threshold above
// rows_per_segment
config::segcompaction_threshold_segment_num = 10;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10047, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := rid
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10047_0.dat");
ls.push_back("10047_1.dat");
ls.push_back("10047_2.dat");
ls.push_back("10047_3.dat");
ls.push_back("10047_4.dat");
ls.push_back("10047_5.dat");
ls.push_back("10047_6.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
EXPECT_EQ(100 * v3 + k2, k1);
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(), s);
EXPECT_EQ(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_EQ(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_ooooOOoOooooooooO) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_small_threshold = 6000; // set threshold above
// rows_per_segment
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10048, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 4;
uint32_t rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 2;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 8;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
// ooooOOoOooooooooO
ls.push_back("10048_0.dat"); // oooo
ls.push_back("10048_1.dat"); // O
ls.push_back("10048_2.dat"); // O
ls.push_back("10048_3.dat"); // o
ls.push_back("10048_4.dat"); // O
ls.push_back("10048_5.dat"); // oooooooo
ls.push_back("10048_6.dat"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_OoOoO) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_small_threshold = 6000; // set threshold above
config::segcompaction_threshold_segment_num = 5;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10049, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 1;
uint32_t rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Arena arena;
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
}
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10049_0.dat"); // O
ls.push_back("10049_1.dat"); // o
ls.push_back("10049_2.dat"); // O
ls.push_back("10049_3.dat"); // o
ls.push_back("10049_4.dat"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionThenReadUniqueTableSmall) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, UNIQUE_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_small_threshold = 6000; // set threshold above
// rows_per_segment
config::segcompaction_threshold_segment_num = 3;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10051, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
vectorized::Arena arena;
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
// segment#0
k1 = k2 = 1;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#1
k1 = k2 = 2;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#2
k1 = k2 = 3;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#3
k1 = k2 = 4;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 12;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#4
k1 = k2 = 25;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#5
k1 = k2 = 26;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10051_0.dat");
ls.push_back("10051_1.dat");
ls.push_back("10051_2.dat");
ls.push_back("10051_3.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
reader_context.is_unique = true;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
std::cout << "k1 k2 k3: " << k1 << " " << k2 << " " << v3 << std::endl;
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(), s);
// duplicated keys between segments are counted duplicately
// so actual read by rowset reader is less or equal to it
EXPECT_GE(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_GE(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, SegCompactionThenReadAggTableSmall) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, AGG_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_small_threshold = 6000; // set threshold above
// rows_per_segment
config::segcompaction_threshold_segment_num = 3;
std::vector<uint32_t> segment_num_rows;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10052, tablet_schema, &writer_context);
std::unique_ptr<RowsetWriter> rowset_writer;
s = RowsetFactory::create_rowset_writer(writer_context, false, &rowset_writer);
EXPECT_EQ(Status::OK(), s);
RowCursor input_row;
input_row.init(tablet_schema);
vectorized::Arena arena;
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
// segment#0
k1 = k2 = 1;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#1
k1 = k2 = 2;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 4;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#2
k1 = k2 = 3;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 6;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#3
k1 = k2 = 4;
k3 = 3;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 9;
k3 = 2;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
k1 = k2 = 12;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#4
k1 = k2 = 25;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#5
k1 = k2 = 26;
k3 = 1;
input_row.set_field_content(0, reinterpret_cast<char*>(&k1), &arena);
input_row.set_field_content(1, reinterpret_cast<char*>(&k2), &arena);
input_row.set_field_content(2, reinterpret_cast<char*>(&k3), &arena);
s = rowset_writer->add_row(input_row);
EXPECT_EQ(Status::OK(), s);
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
rowset = rowset_writer->build();
std::vector<std::string> ls;
ls.push_back("10052_0.dat");
ls.push_back("10052_1.dat");
ls.push_back("10052_2.dat");
ls.push_back("10052_3.dat");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// reader_context.is_unique = true;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
// dup keys may exist between segments, but not in single segment
std::cout << "k1 k2 k3: " << k1 << " " << k2 << " " << v3 << std::endl;
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(), s);
// duplicated keys between segments are counted duplicately
// so actual read by rowset reader is less or equal to it
EXPECT_GE(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_TRUE(rowset_reader->get_segment_num_rows(&segment_num_rows).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_GE(total_num_rows, num_rows_read);
}
}
}
} // namespace doris
// @brief Test Stub