Files
doris/be/src/runtime/memory/mem_tracker_limiter.cpp

639 lines
29 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "runtime/memory/mem_tracker_limiter.h"
#include <fmt/format.h>
#include <gen_cpp/types.pb.h>
#include <stdlib.h>
#include <functional>
#include <mutex>
#include <queue>
#include <utility>
#include "bvar/bvar.h"
#include "common/config.h"
#include "olap/memtable_memory_limiter.h"
#include "runtime/exec_env.h"
#include "runtime/fragment_mgr.h"
#include "runtime/memory/global_memory_arbitrator.h"
#include "runtime/thread_context.h"
#include "runtime/workload_group/workload_group.h"
#include "service/backend_options.h"
#include "util/mem_info.h"
#include "util/perf_counters.h"
#include "util/pretty_printer.h"
#include "util/runtime_profile.h"
namespace doris {
bvar::Adder<int64_t> g_memtrackerlimiter_cnt("memtrackerlimiter_cnt");
constexpr auto GC_MAX_SEEK_TRACKER = 1000;
std::atomic<bool> MemTrackerLimiter::_enable_print_log_process_usage {true};
// Reset before each free
static std::unique_ptr<RuntimeProfile> free_top_memory_task_profile {
std::make_unique<RuntimeProfile>("-")};
static RuntimeProfile::Counter* find_cost_time =
ADD_TIMER(free_top_memory_task_profile, "FindCostTime");
static RuntimeProfile::Counter* cancel_cost_time =
ADD_TIMER(free_top_memory_task_profile, "CancelCostTime");
static RuntimeProfile::Counter* freed_memory_counter =
ADD_COUNTER(free_top_memory_task_profile, "FreedMemory", TUnit::BYTES);
static RuntimeProfile::Counter* cancel_tasks_counter =
ADD_COUNTER(free_top_memory_task_profile, "CancelTasksNum", TUnit::UNIT);
static RuntimeProfile::Counter* seek_tasks_counter =
ADD_COUNTER(free_top_memory_task_profile, "SeekTasksNum", TUnit::UNIT);
static RuntimeProfile::Counter* previously_canceling_tasks_counter =
ADD_COUNTER(free_top_memory_task_profile, "PreviouslyCancelingTasksNum", TUnit::UNIT);
MemTrackerLimiter::MemTrackerLimiter(Type type, const std::string& label, int64_t byte_limit) {
DCHECK_GE(byte_limit, -1);
_consumption = std::make_shared<MemCounter>();
_type = type;
_label = label;
_limit = byte_limit;
if (_type == Type::GLOBAL) {
_group_num = 0;
} else {
_group_num = random() % 999 + 1;
}
// currently only select/load need runtime query statistics
if (_type == Type::LOAD || _type == Type::QUERY) {
_query_statistics = std::make_shared<QueryStatistics>();
}
g_memtrackerlimiter_cnt << 1;
}
std::shared_ptr<MemTrackerLimiter> MemTrackerLimiter::create_shared(MemTrackerLimiter::Type type,
const std::string& label,
int64_t byte_limit) {
auto tracker = std::make_shared<MemTrackerLimiter>(type, label, byte_limit);
#ifndef BE_TEST
DCHECK(ExecEnv::tracking_memory());
std::lock_guard<std::mutex> l(
ExecEnv::GetInstance()->mem_tracker_limiter_pool[tracker->group_num()].group_lock);
ExecEnv::GetInstance()->mem_tracker_limiter_pool[tracker->group_num()].trackers.insert(
ExecEnv::GetInstance()->mem_tracker_limiter_pool[tracker->group_num()].trackers.end(),
tracker);
#endif
return tracker;
}
MemTrackerLimiter::~MemTrackerLimiter() {
consume(_untracked_mem);
static std::string mem_tracker_inaccurate_msg =
", mem tracker not equal to 0 when mem tracker destruct, this usually means that "
"memory tracking is inaccurate and SCOPED_ATTACH_TASK and "
"SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER are not used correctly. "
"1. For query and load, memory leaks may have occurred, it is expected that the query "
"mem tracker will be bound to the thread context using SCOPED_ATTACH_TASK and "
"SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER before all memory alloc and free. "
"2. If a memory alloc is recorded by this tracker, it is expected that be "
"recorded in this tracker when memory is freed. "
"3. Merge the remaining memory tracking value by "
"this tracker into Orphan, if you observe that Orphan is not equal to 0 in the mem "
"tracker web or log, this indicates that there may be a memory leak. "
"4. If you need to "
"transfer memory tracking value between two trackers, can use transfer_to.";
if (_consumption->current_value() != 0) {
// TODO, expect mem tracker equal to 0 at the task end.
if (doris::config::enable_memory_orphan_check && _type == Type::QUERY) {
LOG(INFO) << "mem tracker label: " << _label
<< ", consumption: " << _consumption->current_value()
<< ", peak consumption: " << _consumption->peak_value()
<< mem_tracker_inaccurate_msg;
}
if (ExecEnv::tracking_memory()) {
ExecEnv::GetInstance()->orphan_mem_tracker()->consume(_consumption->current_value());
}
_consumption->set(0);
}
g_memtrackerlimiter_cnt << -1;
}
MemTracker::Snapshot MemTrackerLimiter::make_snapshot() const {
Snapshot snapshot;
snapshot.type = type_string(_type);
snapshot.label = _label;
snapshot.limit = _limit;
snapshot.cur_consumption = _consumption->current_value();
snapshot.peak_consumption = _consumption->peak_value();
return snapshot;
}
void MemTrackerLimiter::refresh_global_counter() {
std::unordered_map<Type, int64_t> type_mem_sum = {
{Type::GLOBAL, 0}, {Type::QUERY, 0}, {Type::LOAD, 0},
{Type::COMPACTION, 0}, {Type::SCHEMA_CHANGE, 0}, {Type::OTHER, 0}};
// always ExecEnv::ready(), because Daemon::_stop_background_threads_latch
for (auto& group : ExecEnv::GetInstance()->mem_tracker_limiter_pool) {
std::lock_guard<std::mutex> l(group.group_lock);
for (auto trackerWptr : group.trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr) {
type_mem_sum[tracker->type()] += tracker->consumption();
}
}
}
for (auto it : type_mem_sum) {
MemTrackerLimiter::TypeMemSum[it.first]->set(it.second);
}
}
void MemTrackerLimiter::clean_tracker_limiter_group() {
#ifndef BE_TEST
if (ExecEnv::tracking_memory()) {
for (auto& group : ExecEnv::GetInstance()->mem_tracker_limiter_pool) {
std::lock_guard<std::mutex> l(group.group_lock);
auto it = group.trackers.begin();
while (it != group.trackers.end()) {
if ((*it).expired()) {
it = group.trackers.erase(it);
} else {
++it;
}
}
}
}
#endif
}
void MemTrackerLimiter::make_process_snapshots(std::vector<MemTracker::Snapshot>* snapshots) {
MemTrackerLimiter::refresh_global_counter();
int64_t all_tracker_mem_sum = 0;
Snapshot snapshot;
for (auto it : MemTrackerLimiter::TypeMemSum) {
snapshot.type = type_string(it.first);
snapshot.label = "";
snapshot.limit = -1;
snapshot.cur_consumption = it.second->current_value();
snapshot.peak_consumption = it.second->peak_value();
(*snapshots).emplace_back(snapshot);
all_tracker_mem_sum += it.second->current_value();
}
snapshot.type = "tc/jemalloc cache";
snapshot.label = "";
snapshot.limit = -1;
snapshot.cur_consumption = MemInfo::allocator_cache_mem();
snapshot.peak_consumption = -1;
(*snapshots).emplace_back(snapshot);
all_tracker_mem_sum += MemInfo::allocator_cache_mem();
snapshot.type = "sum of all trackers"; // is virtual memory
snapshot.label = "";
snapshot.limit = -1;
snapshot.cur_consumption = all_tracker_mem_sum;
snapshot.peak_consumption = -1;
(*snapshots).emplace_back(snapshot);
#ifdef ADDRESS_SANITIZER
snapshot.type = "[ASAN]process resident memory"; // from /proc VmRSS VmHWM
#else
snapshot.type = "process resident memory"; // from /proc VmRSS VmHWM
#endif
snapshot.label = "";
snapshot.limit = -1;
snapshot.cur_consumption = PerfCounters::get_vm_rss();
snapshot.peak_consumption = PerfCounters::get_vm_hwm();
(*snapshots).emplace_back(snapshot);
snapshot.type = "process virtual memory"; // from /proc VmSize VmPeak
snapshot.label = "";
snapshot.limit = -1;
snapshot.cur_consumption = PerfCounters::get_vm_size();
snapshot.peak_consumption = PerfCounters::get_vm_peak();
(*snapshots).emplace_back(snapshot);
}
void MemTrackerLimiter::make_type_snapshots(std::vector<MemTracker::Snapshot>* snapshots,
MemTrackerLimiter::Type type) {
if (type == Type::GLOBAL) {
std::lock_guard<std::mutex> l(
ExecEnv::GetInstance()->mem_tracker_limiter_pool[0].group_lock);
for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[0].trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr) {
(*snapshots).emplace_back(tracker->make_snapshot());
MemTracker::make_group_snapshot(snapshots, tracker->group_num(), tracker->label());
}
}
} else {
for (unsigned i = 1; i < ExecEnv::GetInstance()->mem_tracker_limiter_pool.size(); ++i) {
std::lock_guard<std::mutex> l(
ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].group_lock);
for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr && tracker->type() == type) {
(*snapshots).emplace_back(tracker->make_snapshot());
MemTracker::make_group_snapshot(snapshots, tracker->group_num(),
tracker->label());
}
}
}
}
}
void MemTrackerLimiter::make_top_consumption_snapshots(std::vector<MemTracker::Snapshot>* snapshots,
int top_num) {
std::priority_queue<MemTracker::Snapshot> max_pq;
// not include global type.
for (unsigned i = 1; i < ExecEnv::GetInstance()->mem_tracker_limiter_pool.size(); ++i) {
std::lock_guard<std::mutex> l(
ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].group_lock);
for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr) {
max_pq.emplace(tracker->make_snapshot());
}
}
}
while (!max_pq.empty() && top_num > 0) {
(*snapshots).emplace_back(max_pq.top());
top_num--;
max_pq.pop();
}
}
std::string MemTrackerLimiter::log_usage(MemTracker::Snapshot snapshot) {
return fmt::format(
"MemTrackerLimiter Label={}, Type={}, Limit={}({} B), Used={}({} B), Peak={}({} B)",
snapshot.label, snapshot.type, print_bytes(snapshot.limit), snapshot.limit,
print_bytes(snapshot.cur_consumption), snapshot.cur_consumption,
print_bytes(snapshot.peak_consumption), snapshot.peak_consumption);
}
std::string MemTrackerLimiter::type_log_usage(MemTracker::Snapshot snapshot) {
return fmt::format("Type={}, Used={}({} B), Peak={}({} B)", snapshot.type,
print_bytes(snapshot.cur_consumption), snapshot.cur_consumption,
print_bytes(snapshot.peak_consumption), snapshot.peak_consumption);
}
std::string MemTrackerLimiter::type_detail_usage(const std::string& msg, Type type) {
std::string detail = fmt::format("{}, Type:{}, Memory Tracker Summary", msg, type_string(type));
for (unsigned i = 1; i < ExecEnv::GetInstance()->mem_tracker_limiter_pool.size(); ++i) {
std::lock_guard<std::mutex> l(
ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].group_lock);
for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr && tracker->type() == type) {
detail += "\n " + MemTrackerLimiter::log_usage(tracker->make_snapshot());
}
}
}
return detail;
}
void MemTrackerLimiter::print_log_usage(const std::string& msg) {
if (_enable_print_log_usage) {
_enable_print_log_usage = false;
std::string detail = msg;
detail += "\nProcess Memory Summary:\n " + GlobalMemoryArbitrator::process_mem_log_str();
detail += "\nMemory Tracker Summary: " + log_usage();
std::string child_trackers_usage;
std::vector<MemTracker::Snapshot> snapshots;
MemTracker::make_group_snapshot(&snapshots, _group_num, _label);
for (const auto& snapshot : snapshots) {
child_trackers_usage += "\n " + MemTracker::log_usage(snapshot);
}
if (!child_trackers_usage.empty()) {
detail += child_trackers_usage;
}
LOG(WARNING) << detail;
}
}
std::string MemTrackerLimiter::log_process_usage_str() {
std::string detail;
detail += "\nProcess Memory Summary:\n " + GlobalMemoryArbitrator::process_mem_log_str();
std::vector<MemTracker::Snapshot> snapshots;
MemTrackerLimiter::make_process_snapshots(&snapshots);
MemTrackerLimiter::make_type_snapshots(&snapshots, MemTrackerLimiter::Type::GLOBAL);
MemTrackerLimiter::make_top_consumption_snapshots(&snapshots, 15);
// Add additional tracker printed when memory exceeds limit.
snapshots.emplace_back(
ExecEnv::GetInstance()->memtable_memory_limiter()->mem_tracker()->make_snapshot());
detail += "\nMemory Tracker Summary:";
for (const auto& snapshot : snapshots) {
if (snapshot.label.empty() && snapshot.parent_label.empty()) {
detail += "\n " + MemTrackerLimiter::type_log_usage(snapshot);
} else if (snapshot.parent_label.empty()) {
detail += "\n " + MemTrackerLimiter::log_usage(snapshot);
} else {
detail += "\n " + MemTracker::log_usage(snapshot);
}
}
return detail;
}
void MemTrackerLimiter::print_log_process_usage() {
// The default interval between two prints is 100ms (config::memory_maintenance_sleep_time_ms).
if (MemTrackerLimiter::_enable_print_log_process_usage) {
MemTrackerLimiter::_enable_print_log_process_usage = false;
LOG(WARNING) << log_process_usage_str();
}
}
std::string MemTrackerLimiter::tracker_limit_exceeded_str() {
std::string err_msg = fmt::format(
"memory tracker limit exceeded, tracker label:{}, type:{}, limit "
"{}, peak used {}, current used {}. backend {} process memory used {}.",
label(), type_string(_type), print_bytes(limit()),
print_bytes(_consumption->peak_value()), print_bytes(_consumption->current_value()),
BackendOptions::get_localhost(), PerfCounters::get_vm_rss_str());
if (_type == Type::QUERY || _type == Type::LOAD) {
err_msg += fmt::format(
" exec node:<{}>, can `set exec_mem_limit=8G` to change limit, details see "
"be.INFO.",
doris::thread_context()->thread_mem_tracker_mgr->last_consumer_tracker());
} else if (_type == Type::SCHEMA_CHANGE) {
err_msg += fmt::format(
" can modify `memory_limitation_per_thread_for_schema_change_bytes` in be.conf to "
"change limit, details see be.INFO.");
}
return err_msg;
}
int64_t MemTrackerLimiter::free_top_memory_query(int64_t min_free_mem,
const std::string& vm_rss_str,
const std::string& mem_available_str,
RuntimeProfile* profile, Type type) {
return free_top_memory_query(
min_free_mem, type, ExecEnv::GetInstance()->mem_tracker_limiter_pool,
[&vm_rss_str, &mem_available_str, &type](int64_t mem_consumption,
const std::string& label) {
return fmt::format(
"Process has no memory available, cancel top memory used {}: "
"{} memory tracker <{}> consumption {}, backend {} "
"process memory used {} exceed limit {} or sys available memory {} "
"less than low water mark {}. Execute again after enough memory, "
"details see be.INFO.",
type_string(type), type_string(type), label, print_bytes(mem_consumption),
BackendOptions::get_localhost(), vm_rss_str, MemInfo::mem_limit_str(),
mem_available_str,
print_bytes(MemInfo::sys_mem_available_low_water_mark()));
},
profile, GCType::PROCESS);
}
int64_t MemTrackerLimiter::free_top_memory_query(
int64_t min_free_mem, Type type, std::vector<TrackerLimiterGroup>& tracker_groups,
const std::function<std::string(int64_t, const std::string&)>& cancel_msg,
RuntimeProfile* profile, GCType GCtype) {
using MemTrackerMinQueue = std::priority_queue<std::pair<int64_t, std::string>,
std::vector<std::pair<int64_t, std::string>>,
std::greater<std::pair<int64_t, std::string>>>;
MemTrackerMinQueue min_pq;
// After greater than min_free_mem, will not be modified.
int64_t prepare_free_mem = 0;
std::vector<std::string> canceling_task;
int seek_num = 0;
COUNTER_SET(cancel_cost_time, (int64_t)0);
COUNTER_SET(find_cost_time, (int64_t)0);
COUNTER_SET(freed_memory_counter, (int64_t)0);
COUNTER_SET(cancel_tasks_counter, (int64_t)0);
COUNTER_SET(seek_tasks_counter, (int64_t)0);
COUNTER_SET(previously_canceling_tasks_counter, (int64_t)0);
std::string log_prefix = fmt::format("[MemoryGC] GC free {} top memory used {}, ",
gc_type_string(GCtype), type_string(type));
LOG(INFO) << fmt::format("{}, start seek all {}, running query and load num: {}", log_prefix,
type_string(type),
ExecEnv::GetInstance()->fragment_mgr()->running_query_num());
{
SCOPED_TIMER(find_cost_time);
for (unsigned i = 1; i < tracker_groups.size(); ++i) {
if (seek_num > GC_MAX_SEEK_TRACKER) {
break;
}
std::lock_guard<std::mutex> l(tracker_groups[i].group_lock);
for (auto trackerWptr : tracker_groups[i].trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr && tracker->type() == type) {
seek_num++;
if (tracker->is_query_cancelled()) {
canceling_task.push_back(fmt::format("{}:{} Bytes", tracker->label(),
tracker->consumption()));
continue;
}
if (tracker->consumption() > min_free_mem) {
min_pq = MemTrackerMinQueue();
min_pq.emplace(tracker->consumption(), tracker->label());
prepare_free_mem = tracker->consumption();
break;
} else if (tracker->consumption() + prepare_free_mem < min_free_mem) {
min_pq.emplace(tracker->consumption(), tracker->label());
prepare_free_mem += tracker->consumption();
} else if (!min_pq.empty() && tracker->consumption() > min_pq.top().first) {
min_pq.emplace(tracker->consumption(), tracker->label());
prepare_free_mem += tracker->consumption();
while (prepare_free_mem - min_pq.top().first > min_free_mem) {
prepare_free_mem -= min_pq.top().first;
min_pq.pop();
}
}
}
}
if (prepare_free_mem > min_free_mem && min_pq.size() == 1) {
// Found a big task, short circuit seek.
break;
}
}
}
COUNTER_UPDATE(seek_tasks_counter, seek_num);
COUNTER_UPDATE(previously_canceling_tasks_counter, canceling_task.size());
LOG(INFO) << log_prefix << "seek finished, seek " << seek_num << " tasks. among them, "
<< min_pq.size() << " tasks will be canceled, " << prepare_free_mem
<< " memory size prepare free; " << canceling_task.size()
<< " tasks is being canceled and has not been completed yet;"
<< (!canceling_task.empty() ? " consist of: " + join(canceling_task, ",") : "");
std::vector<std::string> usage_strings;
{
SCOPED_TIMER(cancel_cost_time);
while (!min_pq.empty()) {
TUniqueId cancelled_queryid = label_to_queryid(min_pq.top().second);
if (cancelled_queryid == TUniqueId()) {
LOG(WARNING) << log_prefix
<< "Task ID parsing failed, label: " << min_pq.top().second;
min_pq.pop();
continue;
}
ExecEnv::GetInstance()->fragment_mgr()->cancel_query(
cancelled_queryid, PPlanFragmentCancelReason::MEMORY_LIMIT_EXCEED,
cancel_msg(min_pq.top().first, min_pq.top().second));
COUNTER_UPDATE(freed_memory_counter, min_pq.top().first);
COUNTER_UPDATE(cancel_tasks_counter, 1);
usage_strings.push_back(fmt::format("{} memory used {} Bytes", min_pq.top().second,
min_pq.top().first));
min_pq.pop();
}
}
profile->merge(free_top_memory_task_profile.get());
LOG(INFO) << log_prefix << "cancel finished, " << cancel_tasks_counter->value()
<< " tasks canceled, memory size being freed: " << freed_memory_counter->value()
<< ", consist of: " << join(usage_strings, ",");
return freed_memory_counter->value();
}
int64_t MemTrackerLimiter::free_top_overcommit_query(int64_t min_free_mem,
const std::string& vm_rss_str,
const std::string& mem_available_str,
RuntimeProfile* profile, Type type) {
return free_top_overcommit_query(
min_free_mem, type, ExecEnv::GetInstance()->mem_tracker_limiter_pool,
[&vm_rss_str, &mem_available_str, &type](int64_t mem_consumption,
const std::string& label) {
return fmt::format(
"Process has less memory, cancel top memory overcommit {}: "
"{} memory tracker <{}> consumption {}, backend {} "
"process memory used {} exceed soft limit {} or sys available memory {} "
"less than warning water mark {}. Execute again after enough memory, "
"details see be.INFO.",
type_string(type), type_string(type), label, print_bytes(mem_consumption),
BackendOptions::get_localhost(), vm_rss_str, MemInfo::soft_mem_limit_str(),
mem_available_str,
print_bytes(MemInfo::sys_mem_available_warning_water_mark()));
},
profile, GCType::PROCESS);
}
int64_t MemTrackerLimiter::free_top_overcommit_query(
int64_t min_free_mem, Type type, std::vector<TrackerLimiterGroup>& tracker_groups,
const std::function<std::string(int64_t, const std::string&)>& cancel_msg,
RuntimeProfile* profile, GCType GCtype) {
std::priority_queue<std::pair<int64_t, std::string>> max_pq;
std::unordered_map<std::string, int64_t> query_consumption;
std::vector<std::string> canceling_task;
int seek_num = 0;
int small_num = 0;
COUNTER_SET(cancel_cost_time, (int64_t)0);
COUNTER_SET(find_cost_time, (int64_t)0);
COUNTER_SET(freed_memory_counter, (int64_t)0);
COUNTER_SET(cancel_tasks_counter, (int64_t)0);
COUNTER_SET(seek_tasks_counter, (int64_t)0);
COUNTER_SET(previously_canceling_tasks_counter, (int64_t)0);
std::string log_prefix = fmt::format("[MemoryGC] GC free {} top memory overcommit {}, ",
gc_type_string(GCtype), type_string(type));
LOG(INFO) << fmt::format("{}, start seek all {}, running query and load num: {}", log_prefix,
type_string(type),
ExecEnv::GetInstance()->fragment_mgr()->running_query_num());
{
SCOPED_TIMER(find_cost_time);
for (unsigned i = 1; i < tracker_groups.size(); ++i) {
if (seek_num > GC_MAX_SEEK_TRACKER) {
break;
}
std::lock_guard<std::mutex> l(tracker_groups[i].group_lock);
for (auto trackerWptr : tracker_groups[i].trackers) {
auto tracker = trackerWptr.lock();
if (tracker != nullptr && tracker->type() == type) {
seek_num++;
// 32M small query does not cancel
if (tracker->consumption() <= 33554432 ||
tracker->consumption() < tracker->limit()) {
small_num++;
continue;
}
if (tracker->is_query_cancelled()) {
canceling_task.push_back(fmt::format("{}:{} Bytes", tracker->label(),
tracker->consumption()));
continue;
}
auto overcommit_ratio = int64_t(
(static_cast<double>(tracker->consumption()) / tracker->limit()) *
10000);
max_pq.emplace(overcommit_ratio, tracker->label());
query_consumption[tracker->label()] = tracker->consumption();
}
}
}
}
COUNTER_UPDATE(seek_tasks_counter, seek_num);
COUNTER_UPDATE(previously_canceling_tasks_counter, canceling_task.size());
LOG(INFO) << log_prefix << "seek finished, seek " << seek_num << " tasks. among them, "
<< query_consumption.size() << " tasks can be canceled; " << small_num
<< " small tasks that were skipped; " << canceling_task.size()
<< " tasks is being canceled and has not been completed yet;"
<< (!canceling_task.empty() ? " consist of: " + join(canceling_task, ",") : "");
// Minor gc does not cancel when there is only one query.
if (query_consumption.empty()) {
LOG(INFO) << log_prefix << "finished, no task need be canceled.";
return 0;
}
if (query_consumption.size() == 1) {
auto iter = query_consumption.begin();
LOG(INFO) << log_prefix << "finished, only one task: " << iter->first
<< ", memory consumption: " << iter->second << ", no cancel.";
return 0;
}
std::vector<std::string> usage_strings;
{
SCOPED_TIMER(cancel_cost_time);
while (!max_pq.empty()) {
TUniqueId cancelled_queryid = label_to_queryid(max_pq.top().second);
if (cancelled_queryid == TUniqueId()) {
LOG(WARNING) << log_prefix
<< "Task ID parsing failed, label: " << max_pq.top().second;
max_pq.pop();
continue;
}
int64_t query_mem = query_consumption[max_pq.top().second];
ExecEnv::GetInstance()->fragment_mgr()->cancel_query(
cancelled_queryid, PPlanFragmentCancelReason::MEMORY_LIMIT_EXCEED,
cancel_msg(query_mem, max_pq.top().second));
usage_strings.push_back(fmt::format("{} memory used {} Bytes, overcommit ratio: {}",
max_pq.top().second, query_mem,
max_pq.top().first));
COUNTER_UPDATE(freed_memory_counter, query_mem);
COUNTER_UPDATE(cancel_tasks_counter, 1);
if (freed_memory_counter->value() > min_free_mem) {
break;
}
max_pq.pop();
}
}
profile->merge(free_top_memory_task_profile.get());
LOG(INFO) << log_prefix << "cancel finished, " << cancel_tasks_counter->value()
<< " tasks canceled, memory size being freed: " << freed_memory_counter->value()
<< ", consist of: " << join(usage_strings, ",");
return freed_memory_counter->value();
}
} // namespace doris