533 lines
23 KiB
C++
533 lines
23 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "olap/memtable.h"
|
|
|
|
#include <fmt/format.h>
|
|
#include <gen_cpp/olap_file.pb.h>
|
|
#include <pdqsort.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "bvar/bvar.h"
|
|
#include "common/config.h"
|
|
#include "olap/memtable_memory_limiter.h"
|
|
#include "olap/olap_define.h"
|
|
#include "olap/tablet_schema.h"
|
|
#include "runtime/descriptors.h"
|
|
#include "runtime/exec_env.h"
|
|
#include "runtime/thread_context.h"
|
|
#include "tablet_meta.h"
|
|
#include "util/runtime_profile.h"
|
|
#include "util/stopwatch.hpp"
|
|
#include "vec/aggregate_functions/aggregate_function_reader.h"
|
|
#include "vec/aggregate_functions/aggregate_function_simple_factory.h"
|
|
#include "vec/columns/column.h"
|
|
|
|
namespace doris {
|
|
|
|
bvar::Adder<int64_t> g_memtable_cnt("memtable_cnt");
|
|
bvar::Adder<int64_t> g_memtable_input_block_allocated_size("memtable_input_block_allocated_size");
|
|
|
|
using namespace ErrorCode;
|
|
|
|
MemTable::MemTable(int64_t tablet_id, std::shared_ptr<TabletSchema> tablet_schema,
|
|
const std::vector<SlotDescriptor*>* slot_descs, TupleDescriptor* tuple_desc,
|
|
bool enable_unique_key_mow, PartialUpdateInfo* partial_update_info,
|
|
const std::shared_ptr<MemTracker>& insert_mem_tracker,
|
|
const std::shared_ptr<MemTracker>& flush_mem_tracker)
|
|
: _tablet_id(tablet_id),
|
|
_enable_unique_key_mow(enable_unique_key_mow),
|
|
_keys_type(tablet_schema->keys_type()),
|
|
_tablet_schema(tablet_schema),
|
|
_insert_mem_tracker(insert_mem_tracker),
|
|
_flush_mem_tracker(flush_mem_tracker),
|
|
_is_first_insertion(true),
|
|
_agg_functions(tablet_schema->num_columns()),
|
|
_offsets_of_aggregate_states(tablet_schema->num_columns()),
|
|
_total_size_of_aggregate_states(0),
|
|
_mem_usage(0) {
|
|
g_memtable_cnt << 1;
|
|
_query_thread_context.init();
|
|
_arena = std::make_unique<vectorized::Arena>();
|
|
_vec_row_comparator = std::make_shared<RowInBlockComparator>(_tablet_schema);
|
|
_num_columns = _tablet_schema->num_columns();
|
|
if (partial_update_info != nullptr) {
|
|
_is_partial_update = partial_update_info->is_partial_update;
|
|
if (_is_partial_update) {
|
|
_num_columns = partial_update_info->partial_update_input_columns.size();
|
|
if (partial_update_info->is_schema_contains_auto_inc_column &&
|
|
!partial_update_info->is_input_columns_contains_auto_inc_column) {
|
|
_is_partial_update_and_auto_inc = true;
|
|
_num_columns += 1;
|
|
}
|
|
}
|
|
}
|
|
// TODO: Support ZOrderComparator in the future
|
|
_init_columns_offset_by_slot_descs(slot_descs, tuple_desc);
|
|
}
|
|
|
|
void MemTable::_init_columns_offset_by_slot_descs(const std::vector<SlotDescriptor*>* slot_descs,
|
|
const TupleDescriptor* tuple_desc) {
|
|
for (auto slot_desc : *slot_descs) {
|
|
const auto& slots = tuple_desc->slots();
|
|
for (int j = 0; j < slots.size(); ++j) {
|
|
if (slot_desc->id() == slots[j]->id()) {
|
|
_column_offset.emplace_back(j);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (_is_partial_update_and_auto_inc) {
|
|
_column_offset.emplace_back(_column_offset.size());
|
|
}
|
|
}
|
|
|
|
void MemTable::_init_agg_functions(const vectorized::Block* block) {
|
|
for (uint32_t cid = _tablet_schema->num_key_columns(); cid < _num_columns; ++cid) {
|
|
vectorized::AggregateFunctionPtr function;
|
|
if (_keys_type == KeysType::UNIQUE_KEYS && _enable_unique_key_mow) {
|
|
// In such table, non-key column's aggregation type is NONE, so we need to construct
|
|
// the aggregate function manually.
|
|
function = vectorized::AggregateFunctionSimpleFactory::instance().get(
|
|
"replace_load", {block->get_data_type(cid)},
|
|
block->get_data_type(cid)->is_nullable());
|
|
} else {
|
|
function =
|
|
_tablet_schema->column(cid).get_aggregate_function(vectorized::AGG_LOAD_SUFFIX);
|
|
if (function == nullptr) {
|
|
LOG(WARNING) << "column get aggregate function failed, column="
|
|
<< _tablet_schema->column(cid).name();
|
|
}
|
|
}
|
|
|
|
DCHECK(function != nullptr);
|
|
_agg_functions[cid] = function;
|
|
}
|
|
|
|
for (uint32_t cid = _tablet_schema->num_key_columns(); cid < _num_columns; ++cid) {
|
|
_offsets_of_aggregate_states[cid] = _total_size_of_aggregate_states;
|
|
_total_size_of_aggregate_states += _agg_functions[cid]->size_of_data();
|
|
|
|
// If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned.
|
|
if (cid + 1 < _num_columns) {
|
|
size_t alignment_of_next_state = _agg_functions[cid + 1]->align_of_data();
|
|
|
|
/// Extend total_size to next alignment requirement
|
|
/// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state.
|
|
_total_size_of_aggregate_states =
|
|
(_total_size_of_aggregate_states + alignment_of_next_state - 1) /
|
|
alignment_of_next_state * alignment_of_next_state;
|
|
}
|
|
}
|
|
}
|
|
|
|
MemTable::~MemTable() {
|
|
SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER(_query_thread_context.query_mem_tracker);
|
|
g_memtable_input_block_allocated_size << -_input_mutable_block.allocated_bytes();
|
|
g_memtable_cnt << -1;
|
|
if (_keys_type != KeysType::DUP_KEYS) {
|
|
for (auto it = _row_in_blocks.begin(); it != _row_in_blocks.end(); it++) {
|
|
if (!(*it)->has_init_agg()) {
|
|
continue;
|
|
}
|
|
// We should release agg_places here, because they are not released when a
|
|
// load is canceled.
|
|
for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) {
|
|
auto function = _agg_functions[i];
|
|
DCHECK(function != nullptr);
|
|
function->destroy((*it)->agg_places(i));
|
|
}
|
|
}
|
|
}
|
|
std::for_each(_row_in_blocks.begin(), _row_in_blocks.end(), std::default_delete<RowInBlock>());
|
|
_insert_mem_tracker->release(_mem_usage);
|
|
_flush_mem_tracker->set_consumption(0);
|
|
DCHECK_EQ(_insert_mem_tracker->consumption(), 0)
|
|
<< std::endl
|
|
<< MemTracker::log_usage(_insert_mem_tracker->make_snapshot());
|
|
DCHECK_EQ(_flush_mem_tracker->consumption(), 0);
|
|
_arena.reset();
|
|
_agg_buffer_pool.clear();
|
|
_vec_row_comparator.reset();
|
|
_row_in_blocks.clear();
|
|
_agg_functions.clear();
|
|
_input_mutable_block.clear();
|
|
_output_mutable_block.clear();
|
|
}
|
|
|
|
int RowInBlockComparator::operator()(const RowInBlock* left, const RowInBlock* right) const {
|
|
return _pblock->compare_at(left->_row_pos, right->_row_pos, _tablet_schema->num_key_columns(),
|
|
*_pblock, -1);
|
|
}
|
|
|
|
Status MemTable::insert(const vectorized::Block* input_block,
|
|
const std::vector<uint32_t>& row_idxs) {
|
|
if (_is_first_insertion) {
|
|
_is_first_insertion = false;
|
|
auto clone_block = input_block->clone_without_columns(&_column_offset);
|
|
_input_mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block);
|
|
_vec_row_comparator->set_block(&_input_mutable_block);
|
|
_output_mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block);
|
|
if (_keys_type != KeysType::DUP_KEYS) {
|
|
// there may be additional intermediate columns in input_block
|
|
// we only need columns indicated by column offset in the output
|
|
_init_agg_functions(&clone_block);
|
|
}
|
|
if (_tablet_schema->has_sequence_col()) {
|
|
if (_is_partial_update) {
|
|
// for unique key partial update, sequence column index in block
|
|
// may be different with the index in `_tablet_schema`
|
|
for (size_t i = 0; i < clone_block.columns(); i++) {
|
|
if (clone_block.get_by_position(i).name == SEQUENCE_COL) {
|
|
_seq_col_idx_in_block = i;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
_seq_col_idx_in_block = _tablet_schema->sequence_col_idx();
|
|
}
|
|
}
|
|
}
|
|
|
|
auto num_rows = row_idxs.size();
|
|
size_t cursor_in_mutableblock = _input_mutable_block.rows();
|
|
auto block_size0 = _input_mutable_block.allocated_bytes();
|
|
RETURN_IF_ERROR(_input_mutable_block.add_rows(input_block, row_idxs.data(),
|
|
row_idxs.data() + num_rows, &_column_offset));
|
|
auto block_size1 = _input_mutable_block.allocated_bytes();
|
|
g_memtable_input_block_allocated_size << block_size1 - block_size0;
|
|
auto input_size = size_t(input_block->bytes() * num_rows / input_block->rows() *
|
|
config::memtable_insert_memory_ratio);
|
|
_mem_usage += input_size;
|
|
_insert_mem_tracker->consume(input_size);
|
|
for (int i = 0; i < num_rows; i++) {
|
|
_row_in_blocks.emplace_back(new RowInBlock {cursor_in_mutableblock + i});
|
|
}
|
|
|
|
_stat.raw_rows += num_rows;
|
|
return Status::OK();
|
|
}
|
|
|
|
void MemTable::_aggregate_two_row_in_block(vectorized::MutableBlock& mutable_block,
|
|
RowInBlock* src_row, RowInBlock* dst_row) {
|
|
if (_tablet_schema->has_sequence_col() && _seq_col_idx_in_block >= 0) {
|
|
DCHECK_LT(_seq_col_idx_in_block, mutable_block.columns());
|
|
auto col_ptr = mutable_block.mutable_columns()[_seq_col_idx_in_block].get();
|
|
auto res = col_ptr->compare_at(dst_row->_row_pos, src_row->_row_pos, *col_ptr, -1);
|
|
// dst sequence column larger than src, don't need to update
|
|
if (res > 0) {
|
|
return;
|
|
}
|
|
// need to update the row pos in dst row to the src row pos when has
|
|
// sequence column
|
|
dst_row->_row_pos = src_row->_row_pos;
|
|
}
|
|
// dst is non-sequence row, or dst sequence is smaller
|
|
for (uint32_t cid = _tablet_schema->num_key_columns(); cid < _num_columns; ++cid) {
|
|
auto col_ptr = mutable_block.mutable_columns()[cid].get();
|
|
_agg_functions[cid]->add(dst_row->agg_places(cid),
|
|
const_cast<const doris::vectorized::IColumn**>(&col_ptr),
|
|
src_row->_row_pos, _arena.get());
|
|
}
|
|
}
|
|
Status MemTable::_put_into_output(vectorized::Block& in_block) {
|
|
SCOPED_RAW_TIMER(&_stat.put_into_output_ns);
|
|
std::vector<uint32_t> row_pos_vec;
|
|
DCHECK(in_block.rows() <= std::numeric_limits<int>::max());
|
|
row_pos_vec.reserve(in_block.rows());
|
|
for (int i = 0; i < _row_in_blocks.size(); i++) {
|
|
row_pos_vec.emplace_back(_row_in_blocks[i]->_row_pos);
|
|
}
|
|
return _output_mutable_block.add_rows(&in_block, row_pos_vec.data(),
|
|
row_pos_vec.data() + in_block.rows());
|
|
}
|
|
|
|
size_t MemTable::_sort() {
|
|
SCOPED_RAW_TIMER(&_stat.sort_ns);
|
|
_stat.sort_times++;
|
|
size_t same_keys_num = 0;
|
|
// sort new rows
|
|
Tie tie = Tie(_last_sorted_pos, _row_in_blocks.size());
|
|
for (size_t i = 0; i < _tablet_schema->num_key_columns(); i++) {
|
|
auto cmp = [&](const RowInBlock* lhs, const RowInBlock* rhs) -> int {
|
|
return _input_mutable_block.compare_one_column(lhs->_row_pos, rhs->_row_pos, i, -1);
|
|
};
|
|
_sort_one_column(_row_in_blocks, tie, cmp);
|
|
}
|
|
bool is_dup = (_keys_type == KeysType::DUP_KEYS);
|
|
// sort extra round by _row_pos to make the sort stable
|
|
auto iter = tie.iter();
|
|
while (iter.next()) {
|
|
pdqsort(std::next(_row_in_blocks.begin(), iter.left()),
|
|
std::next(_row_in_blocks.begin(), iter.right()),
|
|
[&is_dup](const RowInBlock* lhs, const RowInBlock* rhs) -> bool {
|
|
return is_dup ? lhs->_row_pos > rhs->_row_pos : lhs->_row_pos < rhs->_row_pos;
|
|
});
|
|
same_keys_num += iter.right() - iter.left();
|
|
}
|
|
// merge new rows and old rows
|
|
_vec_row_comparator->set_block(&_input_mutable_block);
|
|
auto cmp_func = [this, is_dup, &same_keys_num](const RowInBlock* l,
|
|
const RowInBlock* r) -> bool {
|
|
auto value = (*(this->_vec_row_comparator))(l, r);
|
|
if (value == 0) {
|
|
same_keys_num++;
|
|
return is_dup ? l->_row_pos > r->_row_pos : l->_row_pos < r->_row_pos;
|
|
} else {
|
|
return value < 0;
|
|
}
|
|
};
|
|
auto new_row_it = std::next(_row_in_blocks.begin(), _last_sorted_pos);
|
|
std::inplace_merge(_row_in_blocks.begin(), new_row_it, _row_in_blocks.end(), cmp_func);
|
|
_last_sorted_pos = _row_in_blocks.size();
|
|
return same_keys_num;
|
|
}
|
|
|
|
Status MemTable::_sort_by_cluster_keys() {
|
|
SCOPED_RAW_TIMER(&_stat.sort_ns);
|
|
_stat.sort_times++;
|
|
// sort all rows
|
|
vectorized::Block in_block = _output_mutable_block.to_block();
|
|
vectorized::MutableBlock mutable_block =
|
|
vectorized::MutableBlock::build_mutable_block(&in_block);
|
|
auto clone_block = in_block.clone_without_columns();
|
|
_output_mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block);
|
|
|
|
std::vector<RowInBlock*> row_in_blocks;
|
|
std::unique_ptr<int, std::function<void(int*)>> row_in_blocks_deleter((int*)0x01, [&](int*) {
|
|
std::for_each(row_in_blocks.begin(), row_in_blocks.end(),
|
|
std::default_delete<RowInBlock>());
|
|
});
|
|
row_in_blocks.reserve(mutable_block.rows());
|
|
for (size_t i = 0; i < mutable_block.rows(); i++) {
|
|
row_in_blocks.emplace_back(new RowInBlock {i});
|
|
}
|
|
Tie tie = Tie(0, mutable_block.rows());
|
|
|
|
for (auto i : _tablet_schema->cluster_key_idxes()) {
|
|
auto cmp = [&](const RowInBlock* lhs, const RowInBlock* rhs) -> int {
|
|
return mutable_block.compare_one_column(lhs->_row_pos, rhs->_row_pos, i, -1);
|
|
};
|
|
_sort_one_column(row_in_blocks, tie, cmp);
|
|
}
|
|
|
|
// sort extra round by _row_pos to make the sort stable
|
|
auto iter = tie.iter();
|
|
while (iter.next()) {
|
|
pdqsort(std::next(row_in_blocks.begin(), iter.left()),
|
|
std::next(row_in_blocks.begin(), iter.right()),
|
|
[](const RowInBlock* lhs, const RowInBlock* rhs) -> bool {
|
|
return lhs->_row_pos < rhs->_row_pos;
|
|
});
|
|
}
|
|
|
|
in_block = mutable_block.to_block();
|
|
SCOPED_RAW_TIMER(&_stat.put_into_output_ns);
|
|
std::vector<uint32_t> row_pos_vec;
|
|
DCHECK(in_block.rows() <= std::numeric_limits<int>::max());
|
|
row_pos_vec.reserve(in_block.rows());
|
|
for (int i = 0; i < row_in_blocks.size(); i++) {
|
|
row_pos_vec.emplace_back(row_in_blocks[i]->_row_pos);
|
|
}
|
|
return _output_mutable_block.add_rows(&in_block, row_pos_vec.data(),
|
|
row_pos_vec.data() + in_block.rows(), &_column_offset);
|
|
}
|
|
|
|
void MemTable::_sort_one_column(std::vector<RowInBlock*>& row_in_blocks, Tie& tie,
|
|
std::function<int(const RowInBlock*, const RowInBlock*)> cmp) {
|
|
auto iter = tie.iter();
|
|
while (iter.next()) {
|
|
pdqsort(std::next(row_in_blocks.begin(), iter.left()),
|
|
std::next(row_in_blocks.begin(), iter.right()),
|
|
[&cmp](auto lhs, auto rhs) -> bool { return cmp(lhs, rhs) < 0; });
|
|
tie[iter.left()] = 0;
|
|
for (int i = iter.left() + 1; i < iter.right(); i++) {
|
|
tie[i] = (cmp(row_in_blocks[i - 1], row_in_blocks[i]) == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <bool is_final>
|
|
void MemTable::_finalize_one_row(RowInBlock* row,
|
|
const vectorized::ColumnsWithTypeAndName& block_data,
|
|
int row_pos) {
|
|
// move key columns
|
|
for (size_t i = 0; i < _tablet_schema->num_key_columns(); ++i) {
|
|
_output_mutable_block.get_column_by_position(i)->insert_from(*block_data[i].column.get(),
|
|
row->_row_pos);
|
|
}
|
|
if (row->has_init_agg()) {
|
|
// get value columns from agg_places
|
|
for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) {
|
|
auto function = _agg_functions[i];
|
|
auto* agg_place = row->agg_places(i);
|
|
auto* col_ptr = _output_mutable_block.get_column_by_position(i).get();
|
|
function->insert_result_into(agg_place, *col_ptr);
|
|
|
|
if constexpr (is_final) {
|
|
function->destroy(agg_place);
|
|
} else {
|
|
function->reset(agg_place);
|
|
}
|
|
}
|
|
|
|
_arena->clear();
|
|
|
|
if constexpr (is_final) {
|
|
row->remove_init_agg();
|
|
} else {
|
|
for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) {
|
|
auto function = _agg_functions[i];
|
|
auto* agg_place = row->agg_places(i);
|
|
auto* col_ptr = _output_mutable_block.get_column_by_position(i).get();
|
|
function->add(agg_place, const_cast<const doris::vectorized::IColumn**>(&col_ptr),
|
|
row_pos, _arena.get());
|
|
}
|
|
}
|
|
} else {
|
|
// move columns for rows do not need agg
|
|
for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) {
|
|
_output_mutable_block.get_column_by_position(i)->insert_from(
|
|
*block_data[i].column.get(), row->_row_pos);
|
|
}
|
|
}
|
|
if constexpr (!is_final) {
|
|
row->_row_pos = row_pos;
|
|
}
|
|
}
|
|
|
|
template <bool is_final>
|
|
void MemTable::_aggregate() {
|
|
SCOPED_RAW_TIMER(&_stat.agg_ns);
|
|
_stat.agg_times++;
|
|
vectorized::Block in_block = _input_mutable_block.to_block();
|
|
vectorized::MutableBlock mutable_block =
|
|
vectorized::MutableBlock::build_mutable_block(&in_block);
|
|
_vec_row_comparator->set_block(&mutable_block);
|
|
auto& block_data = in_block.get_columns_with_type_and_name();
|
|
std::vector<RowInBlock*> temp_row_in_blocks;
|
|
temp_row_in_blocks.reserve(_last_sorted_pos);
|
|
RowInBlock* prev_row = nullptr;
|
|
int row_pos = -1;
|
|
//only init agg if needed
|
|
for (int i = 0; i < _row_in_blocks.size(); i++) {
|
|
if (!temp_row_in_blocks.empty() &&
|
|
(*_vec_row_comparator)(prev_row, _row_in_blocks[i]) == 0) {
|
|
if (!prev_row->has_init_agg()) {
|
|
prev_row->init_agg_places(
|
|
_arena->aligned_alloc(_total_size_of_aggregate_states, 16),
|
|
_offsets_of_aggregate_states.data());
|
|
for (auto cid = _tablet_schema->num_key_columns(); cid < _num_columns; cid++) {
|
|
auto col_ptr = mutable_block.mutable_columns()[cid].get();
|
|
auto data = prev_row->agg_places(cid);
|
|
_agg_functions[cid]->create(data);
|
|
_agg_functions[cid]->add(
|
|
data, const_cast<const doris::vectorized::IColumn**>(&col_ptr),
|
|
prev_row->_row_pos, _arena.get());
|
|
}
|
|
}
|
|
_stat.merged_rows++;
|
|
_aggregate_two_row_in_block(mutable_block, _row_in_blocks[i], prev_row);
|
|
} else {
|
|
prev_row = _row_in_blocks[i];
|
|
if (!temp_row_in_blocks.empty()) {
|
|
// no more rows to merge for prev row, finalize it
|
|
_finalize_one_row<is_final>(temp_row_in_blocks.back(), block_data, row_pos);
|
|
}
|
|
temp_row_in_blocks.push_back(prev_row);
|
|
row_pos++;
|
|
}
|
|
}
|
|
if (!temp_row_in_blocks.empty()) {
|
|
// finalize the last low
|
|
_finalize_one_row<is_final>(temp_row_in_blocks.back(), block_data, row_pos);
|
|
}
|
|
if constexpr (!is_final) {
|
|
// if is not final, we collect the agg results to input_block and then continue to insert
|
|
size_t shrunked_after_agg = _output_mutable_block.allocated_bytes();
|
|
// flush will not run here, so will not duplicate `_flush_mem_tracker`
|
|
_insert_mem_tracker->consume(shrunked_after_agg - _mem_usage);
|
|
_mem_usage = shrunked_after_agg;
|
|
_input_mutable_block.swap(_output_mutable_block);
|
|
//TODO(weixang):opt here.
|
|
std::unique_ptr<vectorized::Block> empty_input_block = in_block.create_same_struct_block(0);
|
|
_output_mutable_block =
|
|
vectorized::MutableBlock::build_mutable_block(empty_input_block.get());
|
|
_output_mutable_block.clear_column_data();
|
|
_row_in_blocks = temp_row_in_blocks;
|
|
_last_sorted_pos = _row_in_blocks.size();
|
|
}
|
|
}
|
|
|
|
void MemTable::shrink_memtable_by_agg() {
|
|
if (_keys_type == KeysType::DUP_KEYS) {
|
|
return;
|
|
}
|
|
size_t same_keys_num = _sort();
|
|
if (same_keys_num != 0) {
|
|
_aggregate<false>();
|
|
}
|
|
}
|
|
|
|
bool MemTable::need_flush() const {
|
|
auto max_size = config::write_buffer_size;
|
|
if (_is_partial_update) {
|
|
auto update_columns_size = _num_columns;
|
|
max_size = max_size * update_columns_size / _tablet_schema->num_columns();
|
|
max_size = max_size > 1048576 ? max_size : 1048576;
|
|
}
|
|
return memory_usage() >= max_size;
|
|
}
|
|
|
|
bool MemTable::need_agg() const {
|
|
if (_keys_type == KeysType::AGG_KEYS) {
|
|
auto max_size = config::write_buffer_size_for_agg;
|
|
return memory_usage() >= max_size;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Status MemTable::to_block(std::unique_ptr<vectorized::Block>* res) {
|
|
size_t same_keys_num = _sort();
|
|
if (_keys_type == KeysType::DUP_KEYS || same_keys_num == 0) {
|
|
if (_keys_type == KeysType::DUP_KEYS && _tablet_schema->num_key_columns() == 0) {
|
|
_output_mutable_block.swap(_input_mutable_block);
|
|
} else {
|
|
vectorized::Block in_block = _input_mutable_block.to_block();
|
|
RETURN_IF_ERROR(_put_into_output(in_block));
|
|
}
|
|
} else {
|
|
_aggregate<true>();
|
|
}
|
|
if (_keys_type == KeysType::UNIQUE_KEYS && _enable_unique_key_mow &&
|
|
!_tablet_schema->cluster_key_idxes().empty()) {
|
|
RETURN_IF_ERROR(_sort_by_cluster_keys());
|
|
}
|
|
g_memtable_input_block_allocated_size << -_input_mutable_block.allocated_bytes();
|
|
_input_mutable_block.clear();
|
|
_insert_mem_tracker->release(_mem_usage);
|
|
_mem_usage = 0;
|
|
*res = vectorized::Block::create_unique(_output_mutable_block.to_block());
|
|
return Status::OK();
|
|
}
|
|
|
|
} // namespace doris
|